-
Notifications
You must be signed in to change notification settings - Fork 156
Functionality & Deliverables
Mariusz Gromada edited this page Oct 17, 2017
·
5 revisions
Functionality | Example | Support level |
---|---|---|
Simple calculator | i.e. 2+3, n! | Full support |
Binary relations | i.e. a<b, a>b | Full support |
Boolean operators | i.e. a&b | Full support |
Built-in constants | i.e. 2+pi | Full support |
User defined constants | i.e. 3tau, where tau = 2pi | Full support |
Built-in unary functions | i.e. sin(2) | Extensive collection |
Built-in binary functions | i.e. log(a,b) | Main functions |
Built-in n-arguments functions | i.e. gcd(a,b,c,d,…) | Special functions |
Evaluating conditions #1 | i.e. if(a=true, then b, else c) | Full support |
Cases functions | i.e. iff(case1, then a1, case2, then a2, ...) | Full support |
User defined arguments | i.e. x = 5, cos(x) | Full support |
User defined dependent arguments | i.e. x=2, y=x^2 | Full support |
Iterated operators - SIGMA summation | i.e. sum( 1, n, f(…,i) {step} ) | Full support |
Iterated operators - PI product | i.e. prod( 1, n, f(…,i) {step} ) | Full support |
Derivatives | i.e. der( sin(x), x) ) | Full support |
Integrals | i.e. 2*int( sqrt(1-x^2), x, -1, 1) | Full support |
User defined functions | i.e. f(x,y) = sin(x+y) | Full support |
Fast (limited) recursion | i.e. fib(n) = fib(n-1) + fib(n-2), addBaseCase(0, 0), addBaseCase(1, 1) | Full support |
Recursion, any kind | i.e. Cnk(n,k) = if( k>0, if( k<n, Cnk(n-1,k-1)+Cnk(n-1,k), 1), 1) | Full support |
Syntax checking | checkSyntax() | Full support |
Getting computing time | getComputingTime() | Full support |
Verbose mode | setVerboseMode() | Full support |
Language / Framework | Documentation | Library | Source code |
---|---|---|---|
JAVA | Yes | Yes | Yes |
C# .NET | Yes | Yes | Yes |
Visual Basic .NET(CLS) | Yes | Yes | |
C++/CLI .NET(CLS) | Yes | Yes | |
F# .NET(CLS) | Yes | Yes | |
Other .NET languages | Yes | Yes, not tested |
mXparser - Math Parser Java C# .NET (CLS) Library - a super easy, rich and flexible mathematical expressions parser for JAVA Android Kotlin C# .NET and C++ - Provided by Mariusz Gromada, for more information please visit: MathParser.org, MathSpace.pl, mXparser on GitHub pages, mXparser on SourceForge.