-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yml
36 lines (36 loc) · 1.27 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
data:
# The name of the dataset, either mnist or frey
dataset_name: frey
# The number of sample images to show before training
n_imgs: 4
vae:
# The number of nodes in the hidden layer of the encoder network
encoder_hidden_dim: 200
# The number of dimensions of the latent vector
latent_dim: 20
# The number of nodes in the hidden layer of the decoder network
decoder_hidden_dim: 200
# The name of the VAE class, either VAE_EGDG (encoder Gaussian, decoder Gaussian, for frey) or
# VAE_EGDB (encoder Gaussian, decoder Bernoulli, for mnist)
name: VAE_EGDG
train:
# The learning rate of the optimizer.
lr: 0.001
# The number of epochs to train for.
epochs: 10000
# The number of instances in a mini-batch of the optimizer.
batch_size: 100
plot:
# Whether to invert the ELBO values (we minimize what they maximize in the paper, so to get similar plots, we
# need to invert them.
neg_elbo_values: True
# The x-axis label and type, either epochs or samples
x_axis_label: samples
# The scale of the x-axis, either linear or log
x_axis_scale: log
# The min of the y-lim in plotting the ELBO
ylim_min: 0
# The max of the y-lim in plotting the ELBO
ylim_max: 1800
# The number of reconstructed images to plot. 10 is the most space-wise.
n_imgs_rec: 10