|
14 | 14 | {
|
15 | 15 | "cell_type": "code",
|
16 | 16 | "execution_count": null,
|
17 |
| - "metadata": { |
18 |
| - "collapsed": false |
19 |
| - }, |
| 17 | + "metadata": {}, |
20 | 18 | "outputs": [
|
21 | 19 | {
|
22 | 20 | "data": {
|
|
45 | 43 | {
|
46 | 44 | "cell_type": "code",
|
47 | 45 | "execution_count": null,
|
48 |
| - "metadata": { |
49 |
| - "collapsed": false |
50 |
| - }, |
| 46 | + "metadata": {}, |
51 | 47 | "outputs": [
|
52 | 48 | {
|
53 | 49 | "name": "stdout",
|
|
119 | 115 | {
|
120 | 116 | "cell_type": "code",
|
121 | 117 | "execution_count": null,
|
122 |
| - "metadata": { |
123 |
| - "collapsed": false |
124 |
| - }, |
| 118 | + "metadata": {}, |
125 | 119 | "outputs": [],
|
126 | 120 | "source": [
|
127 | 121 | "indir = './data'\n",
|
|
134 | 128 | },
|
135 | 129 | {
|
136 | 130 | "cell_type": "markdown",
|
137 |
| - "metadata": { |
138 |
| - "collapsed": false |
139 |
| - }, |
| 131 | + "metadata": {}, |
140 | 132 | "source": [
|
141 | 133 | "Now we decide which coordinates to be used in the further analysis. In this example we will use nearest-neighbor heavy-atom contacts between the Benzamidine residue and each other residue. If the nearest-neighbor distance between Benzamidine and a given other residue is smaller than 0.5 nm, the contact is set 1, otherwise 0. This results in a contact vector with 233 elements, i.e. each trajectory frame is now represented by a 233-dimensional binary feature vector."
|
142 | 134 | ]
|
143 | 135 | },
|
144 | 136 | {
|
145 | 137 | "cell_type": "code",
|
146 | 138 | "execution_count": null,
|
147 |
| - "metadata": { |
148 |
| - "collapsed": false |
149 |
| - }, |
| 139 | + "metadata": {}, |
150 | 140 | "outputs": [],
|
151 | 141 | "source": [
|
152 | 142 | "feat = coor.featurizer(topfile)\n",
|
|
169 | 159 | {
|
170 | 160 | "cell_type": "code",
|
171 | 161 | "execution_count": null,
|
172 |
| - "metadata": { |
173 |
| - "collapsed": false |
174 |
| - }, |
| 162 | + "metadata": {}, |
175 | 163 | "outputs": [
|
176 | 164 | {
|
177 | 165 | "data": {
|
|
209 | 197 | {
|
210 | 198 | "cell_type": "code",
|
211 | 199 | "execution_count": null,
|
212 |
| - "metadata": { |
213 |
| - "collapsed": false |
214 |
| - }, |
| 200 | + "metadata": {}, |
215 | 201 | "outputs": [
|
216 | 202 | {
|
217 | 203 | "name": "stdout",
|
|
251 | 237 | {
|
252 | 238 | "cell_type": "code",
|
253 | 239 | "execution_count": null,
|
254 |
| - "metadata": { |
255 |
| - "collapsed": false |
256 |
| - }, |
| 240 | + "metadata": {}, |
257 | 241 | "outputs": [],
|
258 | 242 | "source": [
|
259 | 243 | "tica_lag = 10 # tica lagtime\n",
|
|
271 | 255 | {
|
272 | 256 | "cell_type": "code",
|
273 | 257 | "execution_count": null,
|
274 |
| - "metadata": { |
275 |
| - "collapsed": false |
276 |
| - }, |
| 258 | + "metadata": {}, |
277 | 259 | "outputs": [
|
278 | 260 | {
|
279 | 261 | "name": "stdout",
|
|
321 | 303 | {
|
322 | 304 | "cell_type": "code",
|
323 | 305 | "execution_count": null,
|
324 |
| - "metadata": { |
325 |
| - "collapsed": false |
326 |
| - }, |
| 306 | + "metadata": {}, |
327 | 307 | "outputs": [
|
328 | 308 | {
|
329 | 309 | "name": "stderr",
|
|
362 | 342 | {
|
363 | 343 | "cell_type": "code",
|
364 | 344 | "execution_count": null,
|
365 |
| - "metadata": { |
366 |
| - "collapsed": false |
367 |
| - }, |
| 345 | + "metadata": {}, |
368 | 346 | "outputs": [
|
369 | 347 | {
|
370 | 348 | "name": "stdout",
|
|
390 | 368 | {
|
391 | 369 | "cell_type": "code",
|
392 | 370 | "execution_count": null,
|
393 |
| - "metadata": { |
394 |
| - "collapsed": false |
395 |
| - }, |
| 371 | + "metadata": {}, |
396 | 372 | "outputs": [],
|
397 | 373 | "source": [
|
398 | 374 | "Dall = np.concatenate(dtrajs)\n",
|
|
413 | 389 | {
|
414 | 390 | "cell_type": "code",
|
415 | 391 | "execution_count": null,
|
416 |
| - "metadata": { |
417 |
| - "collapsed": false |
418 |
| - }, |
| 392 | + "metadata": {}, |
419 | 393 | "outputs": [
|
420 | 394 | {
|
421 | 395 | "data": {
|
|
454 | 428 | {
|
455 | 429 | "cell_type": "code",
|
456 | 430 | "execution_count": null,
|
457 |
| - "metadata": { |
458 |
| - "collapsed": false |
459 |
| - }, |
| 431 | + "metadata": {}, |
460 | 432 | "outputs": [
|
461 | 433 | {
|
462 | 434 | "name": "stdout",
|
|
490 | 462 | {
|
491 | 463 | "cell_type": "code",
|
492 | 464 | "execution_count": null,
|
493 |
| - "metadata": { |
494 |
| - "collapsed": false |
495 |
| - }, |
| 465 | + "metadata": {}, |
496 | 466 | "outputs": [
|
497 | 467 | {
|
498 | 468 | "name": "stderr",
|
|
522 | 492 | "source": [
|
523 | 493 | "nstates = 5\n",
|
524 | 494 | "lags=[1,2,3,4,5,7,10]\n",
|
525 |
| - "its = msm.timescales_hmsm(dtrajs, nstates, lags=lags, errors='bayes', nsamples=250, n_jobs=-1)" |
| 495 | + "its = msm.timescales_hmsm(dtrajs, nstates, lags=lags, errors='bayes', nsamples=250, n_jobs=1)" |
526 | 496 | ]
|
527 | 497 | },
|
528 | 498 | {
|
529 | 499 | "cell_type": "code",
|
530 | 500 | "execution_count": null,
|
531 |
| - "metadata": { |
532 |
| - "collapsed": false |
533 |
| - }, |
| 501 | + "metadata": {}, |
534 | 502 | "outputs": [
|
535 | 503 | {
|
536 | 504 | "data": {
|
|
644 | 612 | },
|
645 | 613 | {
|
646 | 614 | "cell_type": "markdown",
|
647 |
| - "metadata": { |
648 |
| - "collapsed": false |
649 |
| - }, |
| 615 | + "metadata": {}, |
650 | 616 | "source": [
|
651 | 617 | "dG_stats = np.array([binding_free_energy(M) for M in its.models])\n",
|
652 | 618 | "kon_stats = np.array([binding_rate(M) for M in its.models])\n",
|
|
746 | 712 | {
|
747 | 713 | "cell_type": "code",
|
748 | 714 | "execution_count": null,
|
749 |
| - "metadata": { |
750 |
| - "collapsed": false |
751 |
| - }, |
| 715 | + "metadata": {}, |
752 | 716 | "outputs": [
|
753 | 717 | {
|
754 | 718 | "name": "stdout",
|
|
777 | 741 | {
|
778 | 742 | "cell_type": "code",
|
779 | 743 | "execution_count": null,
|
780 |
| - "metadata": { |
781 |
| - "collapsed": false |
782 |
| - }, |
| 744 | + "metadata": {}, |
783 | 745 | "outputs": [
|
784 | 746 | {
|
785 | 747 | "name": "stderr",
|
|
814 | 776 | {
|
815 | 777 | "cell_type": "code",
|
816 | 778 | "execution_count": null,
|
817 |
| - "metadata": { |
818 |
| - "collapsed": false |
819 |
| - }, |
| 779 | + "metadata": {}, |
820 | 780 | "outputs": [
|
821 | 781 | {
|
822 | 782 | "data": {
|
|
849 | 809 | {
|
850 | 810 | "cell_type": "code",
|
851 | 811 | "execution_count": null,
|
852 |
| - "metadata": { |
853 |
| - "collapsed": false |
854 |
| - }, |
| 812 | + "metadata": {}, |
855 | 813 | "outputs": [
|
856 | 814 | {
|
857 | 815 | "name": "stdout",
|
|
881 | 839 | {
|
882 | 840 | "cell_type": "code",
|
883 | 841 | "execution_count": null,
|
884 |
| - "metadata": { |
885 |
| - "collapsed": false |
886 |
| - }, |
| 842 | + "metadata": {}, |
887 | 843 | "outputs": [
|
888 | 844 | {
|
889 | 845 | "name": "stdout",
|
|
905 | 861 | {
|
906 | 862 | "cell_type": "code",
|
907 | 863 | "execution_count": null,
|
908 |
| - "metadata": { |
909 |
| - "collapsed": false |
910 |
| - }, |
| 864 | + "metadata": {}, |
911 | 865 | "outputs": [
|
912 | 866 | {
|
913 | 867 | "name": "stderr",
|
|
943 | 897 | {
|
944 | 898 | "cell_type": "code",
|
945 | 899 | "execution_count": null,
|
946 |
| - "metadata": { |
947 |
| - "collapsed": false |
948 |
| - }, |
| 900 | + "metadata": {}, |
949 | 901 | "outputs": [
|
950 | 902 | {
|
951 | 903 | "ename": "ValueError",
|
952 | 904 | "evalue": "Sets A and B have to be disjoint",
|
| 905 | + "output_type": "error", |
953 | 906 | "traceback": [
|
954 | 907 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
955 | 908 | "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
|
|
959 | 912 | "\u001b[1;32m/home/marscher/workspace/msmtools/msmtools/analysis/api.pyc\u001b[0m in \u001b[0;36mcommittor\u001b[1;34m(T, A, B, forward, mu)\u001b[0m\n\u001b[0;32m 877\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 878\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mforward\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 879\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mdense\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcommittor\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mforward_committor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mT\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mA\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mB\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 880\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 881\u001b[0m \u001b[1;34m\"\"\" if P is time reversible backward commitor is equal 1 - q+\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
960 | 913 | "\u001b[1;32m/home/marscher/workspace/msmtools/msmtools/analysis/dense/committor.pyc\u001b[0m in \u001b[0;36mforward_committor\u001b[1;34m(T, A, B)\u001b[0m\n\u001b[0;32m 72\u001b[0m \u001b[0mnotAB\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdifference\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mA\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdifference\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mB\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mAB\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 74\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Sets A and B have to be disjoint\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 75\u001b[0m \u001b[0mL\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mT\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meye\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mT\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# Generator matrix\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 76\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
961 | 914 | "\u001b[1;31mValueError\u001b[0m: Sets A and B have to be disjoint"
|
962 |
| - ], |
963 |
| - "output_type": "error" |
| 915 | + ] |
964 | 916 | }
|
965 | 917 | ],
|
966 | 918 | "source": [
|
|
977 | 929 | {
|
978 | 930 | "cell_type": "code",
|
979 | 931 | "execution_count": null,
|
980 |
| - "metadata": { |
981 |
| - "collapsed": false |
982 |
| - }, |
| 932 | + "metadata": {}, |
983 | 933 | "outputs": [],
|
984 | 934 | "source": [
|
985 | 935 | "mplt.plot_flux(tpt, pos=pos, state_sizes=state_sizes, state_colors=state_colors, show_committor=False)\n",
|
|
996 | 946 | {
|
997 | 947 | "cell_type": "code",
|
998 | 948 | "execution_count": null,
|
999 |
| - "metadata": { |
1000 |
| - "collapsed": false |
1001 |
| - }, |
| 949 | + "metadata": {}, |
1002 | 950 | "outputs": [],
|
1003 | 951 | "source": [
|
1004 | 952 | "meta_samples = bhmm.sample_by_observation_probabilities(100)"
|
|
1007 | 955 | {
|
1008 | 956 | "cell_type": "code",
|
1009 | 957 | "execution_count": null,
|
1010 |
| - "metadata": { |
1011 |
| - "collapsed": false |
1012 |
| - }, |
| 958 | + "metadata": {}, |
1013 | 959 | "outputs": [],
|
1014 | 960 | "source": [
|
1015 | 961 | "outfiles = ['./figs/hmm1_100samples.xtc', \n",
|
|
1022 | 968 | {
|
1023 | 969 | "cell_type": "code",
|
1024 | 970 | "execution_count": null,
|
1025 |
| - "metadata": { |
1026 |
| - "collapsed": false |
1027 |
| - }, |
| 971 | + "metadata": {}, |
1028 | 972 | "outputs": [],
|
1029 | 973 | "source": [
|
1030 | 974 | "coor.save_trajs(inp, meta_samples, outfiles=outfiles)"
|
|
1044 | 988 | {
|
1045 | 989 | "cell_type": "code",
|
1046 | 990 | "execution_count": null,
|
1047 |
| - "metadata": { |
1048 |
| - "collapsed": false |
1049 |
| - }, |
| 991 | + "metadata": {}, |
1050 | 992 | "outputs": [],
|
1051 | 993 | "source": [
|
1052 | 994 | "from IPython.display import Image\n",
|
|
1077 | 1019 | ],
|
1078 | 1020 | "metadata": {
|
1079 | 1021 | "kernelspec": {
|
1080 |
| - "display_name": "Python 2", |
| 1022 | + "display_name": "Python 3", |
1081 | 1023 | "language": "python",
|
1082 |
| - "name": "python2" |
| 1024 | + "name": "python3" |
1083 | 1025 | },
|
1084 | 1026 | "language_info": {
|
1085 | 1027 | "codemirror_mode": {
|
1086 | 1028 | "name": "ipython",
|
1087 |
| - "version": 2 |
| 1029 | + "version": 3 |
1088 | 1030 | },
|
1089 | 1031 | "file_extension": ".py",
|
1090 | 1032 | "mimetype": "text/x-python",
|
1091 | 1033 | "name": "python",
|
1092 | 1034 | "nbconvert_exporter": "python",
|
1093 |
| - "pygments_lexer": "ipython2", |
1094 |
| - "version": "2.7.11" |
| 1035 | + "pygments_lexer": "ipython3", |
| 1036 | + "version": "3.8.6" |
1095 | 1037 | }
|
1096 | 1038 | },
|
1097 | 1039 | "nbformat": 4,
|
1098 |
| - "nbformat_minor": 0 |
| 1040 | + "nbformat_minor": 1 |
1099 | 1041 | }
|
0 commit comments