-
-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathsx128x.cpp
887 lines (762 loc) · 24.7 KB
/
sx128x.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#include "Boards.h"
#if MODEM == SX1280
#include "sx128x.h"
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "hal/wdt_hal.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
// SX128x registers
#define OP_RF_FREQ_8X 0x86
#define OP_SLEEP_8X 0x84
#define OP_STANDBY_8X 0x80
#define OP_TX_8X 0x83
#define OP_RX_8X 0x82
#define OP_SET_IRQ_FLAGS_8X 0x8D
#define OP_CLEAR_IRQ_STATUS_8X 0x97
#define OP_GET_IRQ_STATUS_8X 0x15
#define OP_RX_BUFFER_STATUS_8X 0x17
#define OP_PACKET_STATUS_8X 0x1D
#define OP_CURRENT_RSSI_8X 0x1F
#define OP_MODULATION_PARAMS_8X 0x8B
#define OP_PACKET_PARAMS_8X 0x8C
#define OP_STATUS_8X 0xC0
#define OP_TX_PARAMS_8X 0x8E
#define OP_PACKET_TYPE_8X 0x8A
#define OP_BUFFER_BASE_ADDR_8X 0x8F
#define OP_READ_REGISTER_8X 0x19
#define OP_WRITE_REGISTER_8X 0x18
#define IRQ_TX_DONE_MASK_8X 0x01
#define IRQ_RX_DONE_MASK_8X 0x02
#define IRQ_HEADER_DET_MASK_8X 0x10
#define IRQ_HEADER_ERROR_MASK_8X 0x20
#define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40
#define MODE_LONG_RANGE_MODE_8X 0x01
#define OP_FIFO_WRITE_8X 0x1A
#define OP_FIFO_READ_8X 0x1B
#define IRQ_PREAMBLE_DET_MASK_8X 0x80
#define REG_PACKET_SIZE 0x901
#define REG_FIRM_VER_MSB 0x154
#define REG_FIRM_VER_LSB 0x153
#define XTAL_FREQ_8X (double)52000000
#define FREQ_DIV_8X (double)pow(2.0, 18.0)
#define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X)
#if defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx128x::sx128x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(pin_rxen), _busy(LORA_DEFAULT_BUSY_PIN), _txen(pin_txen),
_frequency(0), _txp(0), _sf(0x05), _bw(0x34), _cr(0x01), _packetIndex(0), _implicitHeaderMode(0), _payloadLength(255), _crcMode(0), _fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0), _rxPacketLength(0), _preinit_done(false), _tcxo(false) { setTimeout(0); }
bool ISR_VECT sx128x::getPacketValidity() {
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) { return true; }
else { return false; }
}
void ISR_VECT sx128x::onDio0Rise() {
BaseType_t int_status = taskENTER_CRITICAL_FROM_ISR();
// On the SX1280, there is a bug which can cause the busy line
// to remain high if a high amount of packets are received when
// in continuous RX mode. This is documented as Errata 16.1 in
// the SX1280 datasheet v3.2 (page 149)
// Therefore, the modem is set into receive mode each time a packet is received.
if (sx128x_modem.getPacketValidity()) { sx128x_modem.receive(); sx128x_modem.handleDio0Rise(); }
else { sx128x_modem.receive(); }
taskEXIT_CRITICAL_FROM_ISR(int_status);
}
void sx128x::handleDio0Rise() {
_packetIndex = 0;
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
// If implicit header mode is enabled, use pre-set packet length as payload length instead.
// See SX1280 datasheet v3.2, page 92
if (_implicitHeaderMode == 0x80) { _rxPacketLength = _payloadLength; }
else { _rxPacketLength = rxbuf[0]; }
if (_receive_callback) { _receive_callback(_rxPacketLength); }
}
bool sx128x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
// TODO: Check if this change causes issues on any platforms
#if MCU_VARIANT == MCU_ESP32
#if BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_TDECK
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#else
SPI.begin();
#endif
#else
SPI.begin();
#endif
// Detect modem (retry for up to 500ms)
long start = millis();
uint8_t version_msb;
uint8_t version_lsb;
while (((millis() - start) < 500) && (millis() >= start)) {
version_msb = readRegister(REG_FIRM_VER_MSB);
version_lsb = readRegister(REG_FIRM_VER_LSB);
if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) { break; }
delay(100);
}
if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) { return false; }
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx128x::readRegister(uint16_t address) { return singleTransfer(OP_READ_REGISTER_8X, address, 0x00); }
void sx128x::writeRegister(uint16_t address, uint8_t value) { singleTransfer(OP_WRITE_REGISTER_8X, address, value); }
uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) {
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_8X) { SPI.transfer(0x00); }
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx128x::rxAntEnable() {
if (_txen != -1) { digitalWrite(_txen, LOW); }
if (_rxen != -1) { digitalWrite(_rxen, HIGH); }
}
void sx128x::txAntEnable() {
if (_txen != -1) { digitalWrite(_txen, HIGH); }
if (_rxen != -1) { digitalWrite(_rxen, LOW); }
}
void sx128x::loraMode() {
uint8_t mode = MODE_LONG_RANGE_MODE_8X;
executeOpcode(OP_PACKET_TYPE_8X, &mode, 1);
}
void sx128x::waitOnBusy() {
unsigned long time = millis();
while (digitalRead(_busy) == HIGH) {
if (millis() >= (time + 100)) { break; }
}
}
void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::writeBuffer(const uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_8X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::readBuffer(uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_8X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[3];
buf[0] = sf << 4;
buf[1] = bw;
buf[2] = cr;
executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3);
if (sf <= 6) { writeRegister(0x925, 0x1E); }
else if (sf <= 8) { writeRegister(0x925, 0x37); }
else if (sf >= 9) { writeRegister(0x925, 0x32); }
writeRegister(0x093C, 0x1);
}
uint8_t preamble_e = 0;
uint8_t preamble_m = 0;
uint32_t last_me_result_target = 0;
extern long lora_preamble_symbols;
void sx128x::setPacketParams(uint32_t target_preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc) {
if (last_me_result_target != target_preamble_symbols) {
// Calculate exponent and mantissa values for modem
if (target_preamble_symbols >= 0xF000) target_preamble_symbols = 0xF000;
uint32_t calculated_preamble_symbols;
uint8_t e = 1;
uint8_t m = 1;
while (e <= 15) {
while (m <= 15) {
calculated_preamble_symbols = m * (pow(2,e));
if (calculated_preamble_symbols >= target_preamble_symbols-4) break;
m++;
}
if (calculated_preamble_symbols >= target_preamble_symbols-4) break;
m = 1; e++;
}
last_me_result_target = target_preamble_symbols;
lora_preamble_symbols = calculated_preamble_symbols+4;
_preambleLength = lora_preamble_symbols;
preamble_e = e;
preamble_m = m;
}
uint8_t buf[7];
buf[0] = (preamble_e << 4) | preamble_m;
buf[1] = headermode;
buf[2] = payload_length;
buf[3] = crc;
buf[4] = 0x40; // Standard IQ setting (no inversion)
buf[5] = 0x00; // Unused params
buf[6] = 0x00;
executeOpcode(OP_PACKET_PARAMS_8X, buf, 7);
}
void sx128x::reset() {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
}
int sx128x::begin(unsigned long frequency) {
reset();
if (_rxen != -1) { pinMode(_rxen, OUTPUT); }
if (_txen != -1) { pinMode(_txen, OUTPUT); }
if (_busy != -1) { pinMode(_busy, INPUT); }
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
standby();
loraMode();
rxAntEnable();
setFrequency(frequency);
// TODO: Implement LNA boost
//writeRegister(REG_LNA, 0x96);
setModulationParams(_sf, _bw, _cr);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
setTxPower(_txp);
// Set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2);
_radio_online = true;
return 1;
}
void sx128x::end() {
sleep();
SPI.end();
_bitrate = 0;
_radio_online = false;
_preinit_done = false;
}
int sx128x::beginPacket(int implicitHeader) {
standby();
if (implicitHeader) { implicitHeaderMode(); }
else { explicitHeaderMode(); }
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx128x::endPacket() {
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
txAntEnable();
// Put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_8X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
// Wait for TX done
bool timed_out = false;
uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS;
while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0)) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
yield();
}
if (!(millis() < w_timeout)) { timed_out = true; }
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2);
if (timed_out) { return 0; }
else { return 1; }
}
unsigned long preamble_detected_at = 0;
extern long lora_preamble_time_ms;
extern long lora_header_time_ms;
bool false_preamble_detected = false;
bool sx128x::dcd() {
uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
uint32_t now = millis();
bool header_detected = false;
bool carrier_detected = false;
if ((buf[1] & IRQ_HEADER_DET_MASK_8X) != 0) { header_detected = true; carrier_detected = true; }
else { header_detected = false; }
if ((buf[0] & IRQ_PREAMBLE_DET_MASK_8X) != 0) {
carrier_detected = true;
if (preamble_detected_at == 0) { preamble_detected_at = now; }
if (now - preamble_detected_at > lora_preamble_time_ms + lora_header_time_ms) {
preamble_detected_at = 0;
if (!header_detected) { false_preamble_detected = true; }
uint8_t clearbuf[2] = {0}; clearbuf[0] = IRQ_PREAMBLE_DET_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2);
}
}
// TODO: Maybe there's a way of unlatching the RSSI
// status without re-activating receive mode?
if (false_preamble_detected) { sx128x_modem.receive(); false_preamble_detected = false; }
return carrier_detected;
}
uint8_t sx128x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
return byte;
}
int ISR_VECT sx128x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
int rssi = -byte / 2;
return rssi;
}
uint8_t sx128x::packetRssiRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[0];
}
int ISR_VECT sx128x::packetRssi(uint8_t pkt_snr_raw) {
// TODO: May need more calculations here
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx128x::packetSnrRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[1];
}
float ISR_VECT sx128x::packetSnr() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return float(buf[1]) * 0.25;
}
long sx128x::packetFrequencyError() {
// TODO: Implement this, page 120 of sx1280 datasheet
int32_t freqError = 0;
const float fError = 0.0;
return static_cast<long>(fError);
}
void sx128x::flush() { }
int ISR_VECT sx128x::available() { return _rxPacketLength - _packetIndex; }
size_t sx128x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
size_t sx128x::write(const uint8_t *buffer, size_t size) {
if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; }
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx128x::read() {
if (!available()) { return -1; }
// If received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
int size;
// If implicit header mode is enabled, read packet length as payload length instead.
// See SX1280 datasheet v3.2, page 92
if (_implicitHeaderMode == 0x80) {
size = _payloadLength;
} else {
size = rxbuf[0];
}
_fifo_rx_addr_ptr = rxbuf[1];
if (size > 255) { size = 255; }
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx128x::peek() {
if (!available()) { return -1; }
uint8_t b = _packet[_packetIndex];
return b;
}
void sx128x::onReceive(void(*callback)(int)) {
_receive_callback = callback;
if (callback) {
pinMode(_dio0, INPUT);
// Set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// Set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// On the SX1280, no RxDone IRQ is generated if a packet is received with
// an invalid header, but the modem will be taken out of single RX mode.
// This can cause the modem to not receive packets until it is reset
// again. This is documented as Errata 16.2 in the SX1280 datasheet v3.2
// (page 150) Below, the header error IRQ is mapped to dio0 so that the
// modem can be set into RX mode again on reception of a corrupted
// header.
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_8X | IRQ_HEADER_ERROR_MASK_8X;
// Set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// Set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
_spiModem->notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx128x::receive(int size) {
if (size > 0) {
implicitHeaderMode();
// Tell radio payload length
//_rxPacketLength = size;
//_payloadLength = size;
//setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
rxAntEnable();
// On the SX1280, there is a bug which can cause the busy line
// to remain high if a high amount of packets are received when
// in continuous RX mode. This is documented as Errata 16.1 in
// the SX1280 datasheet v3.2 (page 149)
// Therefore, the modem is set to single RX mode below instead.
// uint8_t mode[3] = {0x03, 0xFF, 0xFF}; // Countinuous RX mode
uint8_t mode[3] = {0}; // single RX mode
executeOpcode(OP_RX_8X, mode, 3);
}
void sx128x::standby() {
uint8_t byte = 0x01; // Always use STDBY_XOSC
executeOpcode(OP_STANDBY_8X, &byte, 1);
}
void sx128x::setPins(int ss, int reset, int dio0, int busy, int rxen, int txen) {
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
_txen = txen;
}
void sx128x::setTxPower(int level, int outputPin) {
uint8_t tx_buf[2];
// RAK4631 with WisBlock SX1280 module (LIBSYS002)
#if BOARD_VARIANT == MODEL_13 || BOARD_VARIANT == MODEL_21
if (level > 27) { level = 27; }
else if (level < 0) { level = 0; }
_txp = level;
int reg_value;
switch (level) {
case 0:
reg_value = -18;
break;
case 1:
reg_value = -16;
break;
case 2:
reg_value = -15;
break;
case 3:
reg_value = -14;
break;
case 4:
reg_value = -13;
break;
case 5:
reg_value = -12;
break;
case 6:
reg_value = -11;
break;
case 7:
reg_value = -9;
break;
case 8:
reg_value = -8;
break;
case 9:
reg_value = -7;
break;
case 10:
reg_value = -6;
break;
case 11:
reg_value = -5;
break;
case 12:
reg_value = -4;
break;
case 13:
reg_value = -3;
break;
case 14:
reg_value = -2;
break;
case 15:
reg_value = -1;
break;
case 16:
reg_value = 0;
break;
case 17:
reg_value = 1;
break;
case 18:
reg_value = 2;
break;
case 19:
reg_value = 3;
break;
case 20:
reg_value = 4;
break;
case 21:
reg_value = 5;
break;
case 22:
reg_value = 6;
break;
case 23:
reg_value = 7;
break;
case 24:
reg_value = 8;
break;
case 25:
reg_value = 9;
break;
case 26:
reg_value = 12;
break;
case 27:
reg_value = 13;
break;
default:
reg_value = 0;
break;
}
tx_buf[0] = reg_value + 18;
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
// T3S3 SX1280 PA
#elif BOARD_VARIANT == MODEL_AC
if (level > 20) { level = 20; }
else if (level < 0) { level = 0; }
_txp = level;
int reg_value;
switch (level) {
case 0:
reg_value = -18;
break;
case 1:
reg_value = -17;
break;
case 2:
reg_value = -16;
break;
case 3:
reg_value = -15;
break;
case 4:
reg_value = -14;
break;
case 5:
reg_value = -13;
break;
case 6:
reg_value = -12;
break;
case 7:
reg_value = -10;
break;
case 8:
reg_value = -9;
break;
case 9:
reg_value = -8;
break;
case 10:
reg_value = -7;
break;
case 11:
reg_value = -6;
break;
case 12:
reg_value = -5;
break;
case 13:
reg_value = -4;
break;
case 14:
reg_value = -3;
break;
case 15:
reg_value = -2;
break;
case 16:
reg_value = -1;
break;
case 17:
reg_value = 0;
break;
case 18:
reg_value = 1;
break;
case 19:
reg_value = 2;
break;
case 20:
reg_value = 3;
break;
default:
reg_value = 0;
break;
}
tx_buf[0] = reg_value;
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
// For SX1280 boards with no specific PA requirements
#else
if (level > 13) { level = 13; }
else if (level < -18) { level = -18; }
_txp = level;
tx_buf[0] = level + 18;
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
#endif
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
}
void sx128x::setFrequency(uint32_t frequency) {
_frequency = frequency;
uint8_t buf[3];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X);
buf[0] = ((freq >> 16) & 0xFF);
buf[1] = ((freq >> 8) & 0xFF);
buf[2] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_8X, buf, 3);
}
uint32_t sx128x::getFrequency() {
// We can't read the frequency on the sx1280
uint32_t frequency = _frequency;
return frequency;
}
void sx128x::setSpreadingFactor(int sf) {
if (sf < 5) { sf = 5; }
else if (sf > 12) { sf = 12; }
_sf = sf;
setModulationParams(sf, _bw, _cr);
handleLowDataRate();
}
uint32_t sx128x::getSignalBandwidth() {
int bw = _bw;
switch (bw) {
case 0x34: return 203.125E3;
case 0x26: return 406.25E3;
case 0x18: return 812.5E3;
case 0x0A: return 1625E3;
}
return 0;
}
void sx128x::setSignalBandwidth(uint32_t sbw) {
if (sbw <= 203.125E3) { _bw = 0x34; }
else if (sbw <= 406.25E3) { _bw = 0x26; }
else if (sbw <= 812.5E3) { _bw = 0x18; }
else { _bw = 0x0A; }
setModulationParams(_sf, _bw, _cr);
handleLowDataRate();
optimizeModemSensitivity();
}
// TODO: add support for new interleaving scheme, see page 117 of sx1280 datasheet
void sx128x::setCodingRate4(int denominator) {
if (denominator < 5) { denominator = 5; }
else if (denominator > 8) { denominator = 8; }
_cr = denominator - 4;
setModulationParams(_sf, _bw, _cr);
}
extern bool lora_low_datarate;
void sx128x::handleLowDataRate() {
if (_sf > 10) { lora_low_datarate = true; }
else { lora_low_datarate = false; }
}
void sx128x::optimizeModemSensitivity() { } // TODO: Check if there's anything the sx1280 can do here
uint8_t sx128x::getCodingRate4() { return _cr + 4; }
void sx128x::setPreambleLength(long preamble_symbols) { setPacketParams(preamble_symbols, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::setSyncWord(int sw) { } // TODO: Implement
void sx128x::enableTCXO() { } // TODO: Need to check how to implement on sx1280
void sx128x::disableTCXO() { } // TODO: Need to check how to implement on sx1280
void sx128x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_8X, &byte, 1); }
uint8_t sx128x::getTxPower() { return _txp; }
uint8_t sx128x::getSpreadingFactor() { return _sf; }
void sx128x::enableCrc() { _crcMode = 0x20; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
void sx128x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::implicitHeaderMode() { _implicitHeaderMode = 0x80; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::dumpRegisters(Stream& out) { for (int i = 0; i < 128; i++) { out.print("0x"); out.print(i, HEX); out.print(": 0x"); out.println(readRegister(i), HEX); } }
sx128x sx128x_modem;
#endif