-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmulti_agent_worker.py
204 lines (165 loc) · 9.35 KB
/
multi_agent_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import matplotlib.pyplot as plt
from copy import deepcopy
from env import Env
from agent import Agent
from model import PolicyNet
from utils.utils import *
from utils.node_manager_quadtree import NodeManager
if not os.path.exists(gifs_path):
os.makedirs(gifs_path)
class Multi_agent_worker:
def __init__(self, meta_agent_id, policy_net, global_step, device='cpu', save_image=False):
self.meta_agent_id = meta_agent_id
self.global_step = global_step
self.save_image = save_image
self.device = device
self.env = Env(global_step, explore=EXPLORATION, plot=self.save_image)
self.n_agent = N_AGENTS
self.node_manager = NodeManager(self.env.ground_truth_coords, self.env.ground_truth_info, explore=EXPLORATION, plot=self.save_image)
self.robot_list = [Agent(i, policy_net, self.node_manager, self.device, self.save_image) for i in range(self.n_agent)]
self.episode_buffer = []
self.perf_metrics = dict()
for i in range(24):
self.episode_buffer.append([])
def run_episode(self):
done = False
for robot in self.robot_list:
robot.update_graph(self.env.belief_info, deepcopy(self.env.robot_locations[robot.id]))
for robot in self.robot_list:
robot.update_safe_graph(self.env.safe_info, self.env.uncovered_safe_frontiers, self.env.counter_safe_info)
for robot in self.robot_list:
robot.update_planning_state(self.env.robot_locations)
robot.update_underlying_state()
safe_increase_log = []
max_travel_dist = 0
for i in range(MAX_EPISODE_STEP):
selected_locations = []
dist_list = []
next_node_index_list = []
for robot in self.robot_list:
observation = robot.get_observation()
state = robot.get_state()
robot.save_observation(observation)
robot.save_state(state)
next_location, next_node_index, action_index = robot.select_next_waypoint(observation)
robot.save_action(action_index)
selected_locations.append(next_location)
dist_list.append(np.linalg.norm(next_location - robot.location))
next_node_index_list.append(next_node_index)
selected_locations = self.solve_path_confict(selected_locations, dist_list)
curr_node_indices = np.array([robot.current_local_index for robot in self.robot_list])
self.env.decrease_safety(selected_locations)
self.env.step(selected_locations)
self.env.classify_safe_frontier(selected_locations)
for robot in self.robot_list:
robot.update_graph(self.env.belief_info, deepcopy(self.env.robot_locations[robot.id]))
for robot in self.robot_list:
robot.update_safe_graph(self.env.safe_info, self.env.uncovered_safe_frontiers, self.env.counter_safe_info)
done = self.env.check_done()
indiv_reward, safety_increase = self.env.calculate_reward(dist_list)
max_travel_dist += np.max(dist_list)
if safety_increase > 0:
safe_increase_log.append(1)
else:
safe_increase_log.append(0)
for robot, reward in zip(self.robot_list, indiv_reward):
robot.save_all_indices(np.array(curr_node_indices))
robot.save_reward(reward)
robot.save_done(done)
robot.update_planning_state(self.env.robot_locations)
robot.update_underlying_state()
if self.save_image:
self.plot_local_env(i)
if done:
break
# save metrics
self.perf_metrics['travel_dist'] = max([robot.travel_dist for robot in self.robot_list])
self.perf_metrics['max_travel_dist'] = max_travel_dist
self.perf_metrics['explored_rate'] = self.env.explored_rate
self.perf_metrics['safe_rate'] = self.env.safe_rate
self.perf_metrics['success_rate'] = done
self.perf_metrics['safe_increase_rate'] = np.mean(safe_increase_log)
# save episode buffer
for robot in self.robot_list:
observation = robot.get_observation()
state = robot.get_state()
robot.save_next_observations(observation, next_node_index_list)
robot.save_next_state(state)
for i in range(len(self.episode_buffer)):
self.episode_buffer[i] += robot.episode_buffer[i]
# save gif
if self.save_image:
make_gif(gifs_path, self.global_step, self.env.frame_files, self.env.safe_rate)
def solve_path_confict(self, selected_locations, dist_list):
selected_locations = np.array(selected_locations).reshape(-1, 2)
arriving_sequence = np.argsort(np.array(dist_list))
selected_locations_in_arriving_sequence = np.array(selected_locations)[arriving_sequence]
for j, selected_location in enumerate(selected_locations_in_arriving_sequence):
solved_locations = selected_locations_in_arriving_sequence[:j]
while selected_location[0] + selected_location[1] * 1j in solved_locations[:, 0] + solved_locations[:, 1] * 1j:
id = arriving_sequence[j]
nearby_nodes = self.robot_list[id].node_manager.local_nodes_dict.nearest_neighbors(
selected_location.tolist(), 25)
for node in nearby_nodes:
coords = node.data.coords
if coords[0] + coords[1] * 1j in solved_locations[:, 0] + solved_locations[:, 1] * 1j:
continue
selected_location = coords
break
selected_locations_in_arriving_sequence[j] = selected_location
selected_locations[id] = selected_location
return selected_locations
def plot_local_env(self, step):
plt.switch_backend('agg')
plt.figure(figsize=(9, 4))
plt.subplot(1, 2, 2)
plt.imshow(self.env.robot_belief, cmap='gray', vmin=0)
plt.axis('off')
color_list = ['r', 'b', 'g', 'y', 'm', 'c', 'k', 'w', (1,0.5,0.5), (0.2,0.5,0.7)]
robot = self.robot_list[0]
nodes = get_cell_position_from_coords(robot.local_node_coords, robot.safe_zone_info)
plt.scatter(nodes[:, 0], nodes[:, 1], c=robot.safe_utility, s=5, zorder=2)
for i in range(nodes.shape[0]):
for j in range(i + 1, nodes.shape[0]):
if robot.local_adjacent_matrix[i, j] == 0:
plt.plot([nodes[i, 0], nodes[j, 0]], [nodes[i, 1], nodes[j, 1]], c=(0.988, 0.557, 0.675), linewidth=1.5, zorder=1)
plt.subplot(1, 2, 1)
plt.imshow(self.env.robot_belief, cmap='gray')
self.env.classify_safe_frontier(self.env.robot_locations)
covered_safe_frontier_cells = get_cell_position_from_coords(self.env.covered_safe_frontiers, self.env.safe_info).reshape(-1, 2)
uncovered_safe_frontier_cells = get_cell_position_from_coords(self.env.uncovered_safe_frontiers, self.env.safe_info).reshape(-1, 2)
if covered_safe_frontier_cells.shape[0] != 0:
plt.scatter(covered_safe_frontier_cells[:, 0], covered_safe_frontier_cells[:, 1], c='g', s=1, zorder=6)
if uncovered_safe_frontier_cells.shape[0] != 0:
plt.scatter(uncovered_safe_frontier_cells[:, 0], uncovered_safe_frontier_cells[:, 1], c='r', s=1, zorder=6)
n_segments = len(self.robot_list[0].trajectory_x) - 1
alpha_values = np.linspace(0.3, 1, n_segments)
for robot in self.robot_list:
c = color_list[robot.id]
if robot.id == 0:
alpha_mask = robot.safe_zone_info.map / 255 / 3
plt.imshow(robot.safe_zone_info.map, cmap='Greens', alpha=alpha_mask)
plt.axis('off')
robot_cell = get_cell_position_from_coords(robot.location, robot.safe_zone_info)
plt.plot(robot_cell[0], robot_cell[1], c=c, marker='o', markersize=10, zorder=5)
for i in range(n_segments):
plt.plot((np.array(robot.trajectory_x[i:i + 2]) - robot.global_map_info.map_origin_x) / robot.cell_size,
(np.array(robot.trajectory_y[i:i + 2]) - robot.global_map_info.map_origin_y) / robot.cell_size,
c,
linewidth=2, alpha=alpha_values[i], zorder=3)
plt.axis('off')
plt.suptitle('Explored rate: {:.4g} | Cleared rate: {:.4g} | Trajectory length: {:.4g}'.format(self.env.explored_rate,
self.env.safe_rate,
max([robot.travel_dist for robot in self.robot_list])))
plt.tight_layout()
plt.savefig('{}/{}_{}_samples.png'.format(gifs_path, self.global_step, step), dpi=150)
plt.close()
frame = '{}/{}_{}_samples.png'.format(gifs_path, self.global_step, step)
self.env.frame_files.append(frame)
if __name__ == '__main__':
from parameter import *
policy_net = PolicyNet(NODE_INPUT_DIM, EMBEDDING_DIM)
# ckp = torch.load('model/viper/checkpoint.pth', map_location='cpu')
# policy_net.load_state_dict(ckp['policy_model'])
worker = Multi_agent_worker(0, policy_net, 0, 'cpu', False)
worker.run_episode()