-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparameter.py
43 lines (34 loc) · 1.16 KB
/
parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
FOLDER_NAME = 'viper'
model_path = f'model/{FOLDER_NAME}'
train_path = f'train/{FOLDER_NAME}'
gifs_path = f'gifs/{FOLDER_NAME}'
SUMMARY_WINDOW = 2
LOAD_MODEL = False # load trained model and resume training
SAVE_IMG_GAP = 1000
N_AGENTS = 4
EXPLORATION = True # True: unknown map, False: known map
CELL_SIZE = 0.4 # meter per pixel
NODE_RESOLUTION = 4.0 # meter of node interval
DOWNSAMPLE_SIZE = NODE_RESOLUTION // CELL_SIZE
SENSOR_RANGE = 20 # meter, 7.9812 for Gregorin's maps
UTILITY_RANGE = 0.8 * SENSOR_RANGE
EVADER_SPEED = SENSOR_RANGE
MIN_UTILITY = 0
FRONTIER_CELL_SIZE = 4 * CELL_SIZE
LOCAL_MAP_SIZE = 40 # meter
EXTENDED_LOCAL_MAP_SIZE = 8 * SENSOR_RANGE * 1.05
MAX_EPISODE_STEP = 128
REPLAY_SIZE = 10000
MINIMUM_BUFFER_SIZE = 5000
BATCH_SIZE = 256
LR = 2e-5
GAMMA = 1
NODE_INPUT_DIM = 8
EMBEDDING_DIM = 128
LOCAL_K_SIZE = 25 # the number of neighboring nodes
LOCAL_NODE_PADDING_SIZE = 360 # the number of nodes will be padded to this value
USE_GPU = False # do you want to collect training data using GPUs
USE_GPU_GLOBAL = True # do you want to train the network using GPUs
NUM_GPU = 1
NUM_META_AGENT = 24 # number of parallel environments
USE_WANDB = False