-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBash_Scripts.txt
112 lines (112 loc) · 5.93 KB
/
Bash_Scripts.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Script 1 - PreSwarm.sh
#!/bin/bash
# Run the script Ampliconize.sh for all samples
# Rename mock community (MC) to S43
for amp in $(seq 43); do
Ampliconize.sh -f "S"$amp"_F.fastq" -r "S"$amp"_R.fastq" -p "A"$amp;
done
# Combine all fasta files to one fasta file prior to clustering
for amp in $(seq 43); do
cat "./Output_A"$amp"_"*/vsearch_derep.fasta" >> Allderep.fasta;
done
vsearch --derep_fulllength Allderep.fasta --sizein --sizeout --fasta_width 0 --output FinAllderep.fasta
----------------------------------------------
# Script 2 - Ampliconize.sh
#!/bin/bash
# Read in files and set project name
while getopts ':f:r:p:' OPTION; do
case "$OPTION" in
f) FWD="$OPTARG";;
r) REV="$OPTARG";;
p) PRJ="$OPTARG";;
*) echo "Parameter not applicable."
esac
done
# Prepare environment
DIR="Output_"$PRJ"_$(date +%x)"
mkdir ./$DIR
LOG="logfile_$(date +%x).txt"
echo -e "Command run by $USER, on" $(date +"%x %r %Z") "\n\nInput was:\n\n$FWD, $REV\n\nInput Path was:\n\n"$(pwd) >> ./$DIR/$(echo $LOG)
# Quality check
echo -e "\n\n----------Vsearch Qual----------\n\n" >> ./$DIR/$(echo $LOG)
vsearch --fastq_chars $FWD 2>> ./$DIR/$(echo $LOG)
vsearch --fastq_chars $REV 2>> ./$DIR/$(echo $LOG)
# Stich forward and reverse read together using PEAR
echo -e "\n\n----------PEAR----------\n\n" >> ./$DIR/$(echo $LOG)
/home/alle/bin/PEAR/bin/pear -f $FWD -r $REV -o ./$DIR/pear -v 100 |& tee -a ./$DIR/$(echo $LOG)
# Remove primers
FWD_Primer="CCAGCASCYGCGGTAATTCC"
REV_Primer="TYRATCAAGAACGAAAGT"
MIN_F=$(( ${#FWD_Primer} * 2 / 3 )) # Primer match is >= 2/3 of primer length
MIN_R=$(( ${#REV_Primer} * 2 / 3 ))
vsearch --quiet --fastx_revcomp pear.assembled.fastq --fastqout pear.assembled.revcom.fastq
cat pear.assembled.fastq pear.assembled.revcom.fastq | ~/.local/bin/cutadapt --discard-untrimmed --minimum-length 32 -g $FWD_Primer -O "${MIN_F}" - 2>> $LOG | ~/.local/bin/cutadapt --discard-untrimmed --minimum-length 32 -a $REV_Primer -O "${MIN_R}" - 2>> $LOG > prirem.fastq
cd ./$DIR
rm pear.discarded.fastq
# Remove Ns and add error rates
echo -e "\n\n----------Vsearch N Removal----------\n\n" >> $LOG
vsearch --quiet --fastq_filter prirem.fastq --fastq_maxns 0 --relabel_sha1 --eeout --fastqout vsearch_rem1.fastq 2>> $LOG
#C Convert to fasta
echo -e "\n\n----------Vsearch fastq -> fasta----------\n\n" >> $LOG
vsearch --quiet --fastq_filter prirem.fastq --fastq_maxns 0 --fastaout vsearch_rem2.fasta 2>> $LOG
# Dereplicate
echo -e "\n\n----------Vsearch Derep----------\n\n" >> $LOG
vsearch --quiet --derep_fulllength vsearch_rem2.fasta --sizeout --fasta_width 0 --relabel_sha1 --output vsearch_derep.fasta 2>> $LOG
# Discard quality lines, extract hash, expected error rates and read length
sed 'n;n;N;d' vsearch_rem1.fastq | awk 'BEGIN {FS = "[;=]"} {if (/^@/) {printf "%s\t%s\t", $1, $3} else {print length($1)}}' | tr -d "@" >> Qualfiletmp.txt
sort -k3,3n -k1,1d -k2,2n Qualfiletmp.txt | uniq --check-chars=40 > Qualfile.txt
cd ..
----------------------------------------------
# Script 3 - Swarming.sh
#!/bin/bash
# Cluster sequences
swarm -d 1 -f -t 6 -z -i FinFasta.struct -s FinFasta.stats -w rep.fasta -o FinFasta.swarms < FinAllderep.fasta
# Sort clusters/OTUs
vsearch --fasta_width 0 --sortbysize rep.fasta --output finalrep.fasta
# Identify chimeras
vsearch --uchime_denovo finalrep.fasta --uchimeout chim.uchime
----------------------------------------------
# Script 4 - TaxAnno.sh
#!/bin/bash
# Prepare database for BLAST
wget -c "https://www.arb-silva.de/fileadmin/silva_databases/release_128/Exports/SILVA_128_SSURef_tax_silva.fasta.gz"
gunzip SILVA_128_SSURef_tax_silva.fasta.gz
makeblastdb -in SILVA_128_SSURef_tax_silva.fasta - parse_seqids -dbtype nucl
# Assign taxonomy (That can take a while)
blastn –query finalrep.fasta –db SILVA_128_SSURef_tax_silva.fasta -outfmt 6 -out blast_rep.out -evalue 0.0000000001 -max_target_seqs 1 -num_threads 8
# Prepare annotation table for OTU table merging
awk '/>/{print $0;}' finalrep.fasta >> seq_size.txt
awk '/>/{print $0;}' SILVA_128_SSURef_tax_silva.fasta >> SILVA_128_taxa.txt
# Feed into R_Script TaxAnno.R (Script 1)
----------------------------------------------
# Script 5 - BuildOTUTable.sh
#!/bin/bash
# generate concatenated quality files and rename fasta files
for amp in $(seq 43); do cat "Output_A"$amp"_"*/Qualfiletmp.txt" >> AllQual.txt; done
for amp in $(seq 43); do cat "Output_A"$amp"_"*/vsearch_derep.fasta" > "S"$amp".fasta"; done
# generate OTU table
python OTU_contigency_table.py finalrep.fasta FinFasta.stats FinFasta.swarms chim.uchime FinQual.txt representatives.results S[0-9]*.fasta > OTU.table
# remove sequence information from OTU table to reduce size
cut -f10 --complement OTU.table >> OTU2.txt
cut -f4 --complement OTU2.txt >> OTU3.txt
rm OTU2.txt
mv OTU3.txt OTU2.txt
# Feed into R_Script DownstreamAna.R (Script 2)
----------------------------------------------
# Script 6 - FuncPred.sh
#!/bin/bash
# Reformat OTU table + annotate OTUs against GreenGenes
cut -f-9,11- OTU.table >> Crust1.table
sed -e '/;size=1;/,+1d' finalrep.fasta > Singlesremoved.fasta
wget 'ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_5.fasta.gz'
makeblastdb -in gg_13_5.fasta -parse_seqids -dbtype nucl
blastn -db /media/alle/Daten2/Databases/GreenGenes/gg_13_5.fasta -query Singlesremoved.fasta -out Singlesremoved.out -evalue 0.0000000001 -max_target_seqs 1 -num_threads 8
# Feed into R_Script DownstreamAna.R (Script 2)
biom convert -i Crust2.txt -o Crust.json.biom --table-type="OTU table" --to-json
normalize_by_copy_number.py --gg_version 13_5 -i Crust.json.biom -o norm_otus.biom
# Predict functions
predict_metagenomes.py -i norm_otus.biom -o kegg_metagenome_predictions.biom
categorize_by_function.py -f -i kegg_metagenome_predictions.biom -c KEGG_Pathways -l 1 -o kegg_functions.L1.txt
categorize_by_function.py -f -i kegg_metagenome_predictions.biom -c KEGG_Pathways -l 2 -o kegg_functions.L2.txt
categorize_by_function.py -f -i kegg_metagenome_predictions.biom -c KEGG_Pathways -l 3 -o kegg_functions.L3.txt
# Feed into R_Script DownstreamAna.R (Script 2)