-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_irradiance_map.cpp
535 lines (410 loc) · 15.2 KB
/
calculate_irradiance_map.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//
// Created by Marrony Neris on 12/18/15.
//
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <memory.h>
#include <unistd.h>
#include <math.h>
#include <assert.h>
#include <chrono>
#include <thread>
#include <algorithm>
#include "Vector.h"
#include "Matrix.h"
#include "Device.h"
#include "Allocator.h"
#include "TextureManager.h"
#define IMG_PATH "images/LancellottiChapel"
#define NUM_SAMPLES 128
#define OUTPUT_SIZE 128
void imageGet3(const Image& image, int x, int y, float pixels[3]) {
int offsety = y*image.format*image.width;
int offsetx = x*image.format;
pixels[0] = image.pixels[offsety + offsetx + 0] / 255.0f;
pixels[1] = image.pixels[offsety + offsetx + 1] / 255.0f;
pixels[2] = image.pixels[offsety + offsetx + 2] / 255.0f;
}
void imageSet3(Image& image, int x, int y, float pixels[3]) {
int offsety = y*image.format*image.width;
int offsetx = x*image.format;
image.pixels[offsety + offsetx + 0] = pixels[0] * 255.0f;
image.pixels[offsety + offsetx + 1] = pixels[1] * 255.0f;
image.pixels[offsety + offsetx + 2] = pixels[2] * 255.0f;
}
void imageSet3(Image& image, int x, int y, float r, float g, float b) {
float pixels[3] = {r, g, b};
imageSet3(image, x, y, pixels);
}
void sampleFace(const Image& input, float sc, float tc, float ma, float color[3]) {
ma = fabs(ma);
float s = (sc/ma + 1) * 0.5;
float t = (tc/ma + 1) * 0.5;
int x = s * (input.width - 1);
int y = t * (input.height - 1);
assert(x < input.width);
assert(y < input.height);
imageGet3(input, x, y, color);
}
void sampleCube(const ImageCube& input, float vector[3], float color[3]) {
float x = fabs(vector[0]);
float y = fabs(vector[1]);
float z = fabs(vector[2]);
float temp[3];
float count = 0;
mnVector3MulScalar(color, 0, color);
if(x >= y && x >= z) {
if(vector[0] >= 0)
sampleFace(input.faces[POSITIVE_X], -vector[2], +vector[1], vector[0], temp);
else
sampleFace(input.faces[NEGATIVE_X], +vector[2], +vector[1], vector[0], temp);
mnVector3Add(color, temp, color);
count += 1;
}
if(y >= x && y >= z) {
if(vector[1] >= 0)
sampleFace(input.faces[POSITIVE_Y], +vector[0], -vector[2], vector[1], temp);
else
sampleFace(input.faces[NEGATIVE_Y], +vector[0], +vector[2], vector[1], temp);
mnVector3Add(color, temp, color);
count += 1;
}
if(z >= x && z >= y) {
if(vector[2] >= 0)
sampleFace(input.faces[POSITIVE_Z], +vector[0], +vector[1], vector[2], temp);
else
sampleFace(input.faces[NEGATIVE_Z], -vector[0], +vector[1], vector[2], temp);
mnVector3Add(color, temp, color);
count += 1;
}
mnVector3MulScalar(color, 1.0 / count, color);
}
float* tangentToWorld( const float v[3], const float tangentZ[3], float out[3] ) {
float tangentX[3];
float tangentY[3];
if(fabs(tangentZ[2]) < 0.999) {
float up[3] = {0,0,1};
mnVector3Cross(up, tangentZ, tangentX);
} else {
float up[3] = {1,0,0};
mnVector3Cross(up, tangentZ, tangentX);
}
mnVector3Normalize(tangentX, tangentX);
mnVector3Cross(tangentZ, tangentX, tangentY);
float temp[3];
mnVector3MulScalar(tangentX, v[0], temp);
mnVector3MulAddScalar(tangentY, v[1], temp);
mnVector3MulAddScalar(tangentZ, v[2], temp);
out[0] = temp[0];
out[1] = temp[1];
out[2] = temp[2];
return out;
}
uint32_t bitfieldReverse(uint32_t bits) {
bits = ( bits << 16) | ( bits >> 16);
bits = ( (bits & 0x00ff00ff) << 8 ) | ( (bits & 0xff00ff00) >> 8 );
bits = ( (bits & 0x0f0f0f0f) << 4 ) | ( (bits & 0xf0f0f0f0) >> 4 );
bits = ( (bits & 0x33333333) << 2 ) | ( (bits & 0xcccccccc) >> 2 );
bits = ( (bits & 0x55555555) << 1 ) | ( (bits & 0xaaaaaaaa) >> 1 );
return bits;
}
void hammersley2D( uint32_t i, uint32_t N, float out[2] ) {
float E1 = float(i) / float(N);
float E2 = float(bitfieldReverse(i)) * 2.3283064365386963e-10;
out[0] = E1;
out[1] = E2;
}
float* uniformSampleHemisphere( float E[2], float Out[4] ) {
float Phi = 2 * M_PI * E[0];
float CosTheta = E[1];
float SinTheta = sqrtf( 1 - CosTheta * CosTheta );
Out[0] = SinTheta * cosf( Phi );
Out[1] = SinTheta * sinf( Phi );
Out[2] = CosTheta;
Out[3] = CosTheta / M_PI;
return Out;
}
float* cosineSampleHemisphere( float E[2], float Out[4] ) {
float Phi = 2 * M_PI * E[0];
float CosTheta = sqrtf( E[1] );
float SinTheta = sqrtf( 1 - CosTheta * CosTheta );
Out[0] = SinTheta * cosf( Phi );
Out[1] = SinTheta * sinf( Phi );
Out[2] = CosTheta;
Out[3] = CosTheta / M_PI;
return Out;
}
void normalForFace(int face, int x, int y, int width, int height, float N[3]) {
float s = width == 1 ? 0.5 : x / (float)(width - 1);
float t = height == 1 ? 0.5 : y / (float)(height - 1);
float xx = s * 2 - 1;
float yy = t * 2 - 1;
if(face == POSITIVE_Y) {
float temp[3] = {xx, 1, -yy};
mnVector3Normalize(temp, N);
} else if(face == NEGATIVE_Y) {
float temp[3] = {xx, -1, yy};
mnVector3Normalize(temp, N);
} else if(face == POSITIVE_X) {
float temp[3] = {1, yy, -xx};
mnVector3Normalize(temp, N);
} else if(face == NEGATIVE_X) {
float temp[3] = {-1, yy, xx};
mnVector3Normalize(temp, N);
} else if(face == POSITIVE_Z) {
float temp[3] = {xx, yy, 1};
mnVector3Normalize(temp, N);
} else if(face == NEGATIVE_Z) {
float temp[3] = {-xx, yy, -1};
mnVector3Normalize(temp, N);
}
}
void computeIrradiance(int face, const ImageCube& input, const float N[3], float irradiance[3]) {
float sampledColour[3] = {0, 0, 0};
for(int i = 0; i < NUM_SAMPLES; i++) {
float Xi[2];
float L[4];
float H[3];
hammersley2D(i, NUM_SAMPLES, Xi);
cosineSampleHemisphere(Xi, L);
tangentToWorld(L, N, L);
float NdotL = mnVector3Dot(N, L);
if(NdotL > 0) {
float Li[3];
sampleCube(input, L, Li);
mnVector3Add(sampledColour, Li, sampledColour);
}
}
mnVector3MulScalar(sampledColour, 1 / (float)NUM_SAMPLES, irradiance);
}
void computeFaceIrradiance(int face, const ImageCube& input, Image& output) {
for(int y = 0; y < output.height; y++) {
for(int x = 0; x < output.width; x++) {
float N[3];
float outColor[3];
normalForFace(face, x, y, output.width, output.height, N);
computeIrradiance(face, input, N, outColor);
imageSet3(output, x, y, outColor);
}
}
}
void computeDiffuseIrradiance(HeapAllocator& allocator, const ImageCube& input, int width, int height, ImageCube& output) {
for(int face = 0; face < 6; face++) {
output.faces[face].width = width;
output.faces[face].height = height;
output.faces[face].format = 3;
output.faces[face].pixels = (uint8_t*)allocator.allocate(3 * width * height);
memset(output.faces[face].pixels, 0, 3 * width * height);
}
auto start = std::chrono::high_resolution_clock::now();
#if 1
for(int face = 0; face < 6; face++) {
printf("Calculating irradiance for face %d\n", face);
auto start = std::chrono::high_resolution_clock::now();
computeFaceIrradiance(face, input, output.faces[face]);
auto end = std::chrono::high_resolution_clock::now();
long long milli = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
printf("Took %lld millis\n", milli);
}
#else
std::thread tr[6];
for(int face = 0; face < 6; face++) {
tr[face] = std::thread([=]() {
computeFaceIrradiance(face, input, output[face]);
});
}
for(int face = 0; face < 6; face++)
tr[face].join();
#endif
auto end = std::chrono::high_resolution_clock::now();
long long milli = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
printf("Total time: %lld millis\n", milli);
}
void ImportanceSampleGGX(const float Xi[2], float roughness, float H[3]) {
float a = roughness * roughness;
float phi = 2 * M_PI * Xi[0];
float cosTheta = sqrtf( (1 - Xi[1]) / (1 + (a*a - 1) * Xi[1]) );
float sinTheta = sqrtf( 1 - cosTheta * cosTheta );
H[0] = sinTheta * cosf(phi);
H[1] = sinTheta * sinf(phi);
H[2] = cosTheta;
}
//I - 2.0 * dot ( N , I ) * N
void reflect(float k, const float I[3], const float N[3], float out[3]) {
float Ii[3];
mnVector3MulScalar(I, k, Ii);
float dot = 2.0f * mnVector3Dot(N, Ii);
mnVector3MulScalar(N, dot, out);
mnVector3Sub(Ii, out, out);
}
////input world space [N = V = R]
void prefilterEnvMap(const ImageCube& input, float roughness, const float R[3], float out[3]) {
float prefilterColor[3] = {0, 0, 0};
float totalWeight = 0;
for(uint32_t i = 0; i < NUM_SAMPLES; i++) {
float Xi[2];
float H[3];
float L[3];
hammersley2D(i, NUM_SAMPLES, Xi);
ImportanceSampleGGX(Xi, roughness, H);
tangentToWorld(H, R, H);
reflect(-1, R, H, L);
float NdotL = std::max(0.0f, mnVector3Dot(R, L));
if (NdotL > 0) {
float Li[3];
sampleCube(input, L, Li);
mnVector3MulAddScalar(Li, NdotL, prefilterColor);
totalWeight += NdotL;
}
}
mnVector3MulScalar(prefilterColor, 1.0f / std::max(totalWeight, 0.001f), out);
}
void computePrefilterEnvMapForFace(int face, const ImageCube& input, float roughness, Image& output) {
for(int y = 0; y < output.height; y++) {
for(int x = 0; x < output.width; x++) {
float N[3];
float outColor[3];
normalForFace(face, x, y, output.width, output.height, N);
prefilterEnvMap(input, roughness, N, outColor);
imageSet3(output, x, y, outColor);
}
}
}
void computePrefilterEnvMap(HeapAllocator& allocator, const ImageCube& input, float roughness, int width, int height, ImageCube& output) {
for(int face = 0; face < 6; face++) {
output.faces[face].width = width;
output.faces[face].height = height;
output.faces[face].format = 3;
output.faces[face].pixels = (uint8_t*)allocator.allocate(3 * width * height);
memset(output.faces[face].pixels, 0, 3 * width * height);
}
auto start = std::chrono::high_resolution_clock::now();
for(int face = 0; face < 6; face++)
computePrefilterEnvMapForFace(face, input, roughness, output.faces[face]);
if(width == 1 && height == 1) {
float color[3] = {0, 0, 0};
for(int i = 0; i < 6; i++) {
float temp[3];
imageGet3(output.faces[i], 0, 0, temp);
mnVector3Add(color, temp, color);
}
mnVector3MulScalar(color, 1.0f / 6.0f, color);
for(int i = 0; i < 6; i++)
imageSet3(output.faces[i], 0, 0, color);
}
auto end = std::chrono::high_resolution_clock::now();
long long milli = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
printf("Total time: %lld millis\n", milli);
}
float G1_smithGGX(float alpha, float NdotX) {
float NdotX2 = NdotX * NdotX;
float alpha2 = alpha * alpha;
return NdotX + sqrtf(NdotX2 * (1 - alpha2) + alpha2);
}
float GVis_smithGGX(float roughness, float NdotV, float NdotL) {
float alpha = roughness*roughness;
return 1 / (G1_smithGGX(alpha, NdotL) * G1_smithGGX(alpha, NdotV));
}
float G_smithGGX(float roughness, float NdotV, float NdotL) {
float alpha = roughness*roughness;
float v = 2*(NdotV) / G1_smithGGX(alpha, NdotV);
float l = 2*(NdotL) / G1_smithGGX(alpha, NdotL);
return v*l;
}
void integrateBRDF(float roughness, float NdotV, float out[2]) {
float V[3];
V[0] = sqrtf(1 - NdotV * NdotV);
V[1] = 0;
V[2] = NdotV;
float A = 0;
float B = 0;
for(int i = 0; i < NUM_SAMPLES; i++) {
float Xi[2];
float H[3];
float L[3];
hammersley2D(i, NUM_SAMPLES, Xi);
ImportanceSampleGGX(Xi, roughness, H);
reflect(-1, V, H, L);
float NdotL = std::max(0.0f, L[2]);
float NdotH = std::max(0.0f, H[2]);
float VdotH = std::max(0.0f, mnVector3Dot(V, H));
if(NdotL > 0) {
#if 1
float G_Vis = GVis_smithGGX(roughness, NdotV, NdotL);
float NdotL_G_Vis_Pdf = NdotL * G_Vis * (4 * VdotH / NdotH);
#else
float G = G_smithGGX(roughness, NdotV, NdotL);
float NdotL_G_Vis_Pdf = G * VdotH / (NdotH * NdotV);
#endif
float Fc = pow(1 - VdotH, 5);
A += (1 - Fc) * NdotL_G_Vis_Pdf;
B += Fc * NdotL_G_Vis_Pdf;
}
}
out[0] = A / (float)NUM_SAMPLES;
out[1] = B / (float)NUM_SAMPLES;
}
void calculateIntegrateBRDF(HeapAllocator& allocator, int width, int height, Image& output) {
output.width = width;
output.height = height;
output.format = 3;
output.pixels = (uint8_t*)allocator.allocate(3 * width * height);
memset(output.pixels, 0, 3 * width * height);
for(int x = 0; x < width; x++) {
float roughness = x / float(width - 1);
for(int y = 0; y < height; y++) {
float outColor[3] = {0, 0, 0};
float NdotV = y / float(height - 1);
integrateBRDF(roughness, NdotV, outColor);
imageSet3(output, x, y, outColor);
}
}
}
int main() {
srand(time(nullptr));
HeapAllocator heapAllocator;
ImageCube input;
readJpeg(heapAllocator, IMG_PATH"/posx.jpg", input.faces[POSITIVE_X]);
readJpeg(heapAllocator, IMG_PATH"/negx.jpg", input.faces[NEGATIVE_X]);
readJpeg(heapAllocator, IMG_PATH"/posy.jpg", input.faces[POSITIVE_Y]);
readJpeg(heapAllocator, IMG_PATH"/negy.jpg", input.faces[NEGATIVE_Y]);
readJpeg(heapAllocator, IMG_PATH"/posz.jpg", input.faces[POSITIVE_Z]);
readJpeg(heapAllocator, IMG_PATH"/negz.jpg", input.faces[NEGATIVE_Z]);
#if 1
{
ImageCube output;
computeDiffuseIrradiance(heapAllocator, input, OUTPUT_SIZE, OUTPUT_SIZE, output);
saveCube(IMG_PATH"/diffuse_irradiance.irr", output);
for(int i = 0; i < 6; i++)
heapAllocator.deallocate(output.faces[i].pixels);
}
#endif
#if 1
int size = OUTPUT_SIZE;
float maxMips = log2f((float)size);
for(float mip = 0; mip <= maxMips; mip += 1) {
char filename[1024];
snprintf(filename, 1024, "%s/prefilter_env_map_%d.irr", IMG_PATH, (int)mip);
ImageCube output;
float roughness = mip / maxMips;
printf("Calculating prefilterEnvMap(roughness=%.2f, width=%d, height=%d)\n", roughness, size, size);
computePrefilterEnvMap(heapAllocator, input, roughness, size, size, output);
saveCube(filename, output);
for(int i = 0; i < 6; i++)
heapAllocator.deallocate(output.faces[i].pixels);
size >>= 1;
}
#endif
#if 1
{
Image output;
calculateIntegrateBRDF(heapAllocator, OUTPUT_SIZE, OUTPUT_SIZE, output);
saveImage(IMG_PATH"/integrate_brdf.irr", output);
heapAllocator.deallocate(output.pixels);
}
#endif
for(int i = 0; i < 6; i++)
heapAllocator.deallocate(input.faces[i].pixels);
return 0;
}