Skip to content

Files

Latest commit

 

History

History
95 lines (69 loc) · 4.48 KB

File metadata and controls

95 lines (69 loc) · 4.48 KB

cannyEdgeDetectorNPP - Canny Edge Detector NPP

Description

An NPP CUDA Sample that demonstrates the recommended parameters to use with the nppiFilterCannyBorder_8u_C1R Canny Edge Detection image filter function. This function expects a single channel 8-bit grayscale input image. You can generate a grayscale image from a color image by first calling nppiColorToGray() or nppiRGBToGray(). The Canny Edge Detection function combines and improves on the techniques required to produce an edge detection image using multiple steps.

Key Concepts

Performance Strategies, Image Processing, NPP Library

Supported SM Architectures

SM 3.0 SM 3.5 SM 3.7 SM 5.0 SM 5.2 SM 6.0 SM 6.1 SM 7.0 SM 7.2 SM 7.5

Supported OSes

Linux, Windows, MacOSX

Supported CPU Architecture

x86_64, ppc64le, armv7l

CUDA APIs involved

Dependencies needed to build/run

FreeImage, NPP

Prerequisites

Download and install the CUDA Toolkit 10.1 for your corresponding platform. Make sure the dependencies mentioned in Dependencies section above are installed.

Build and Run

Windows

The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format:

*_vs<version>.sln - for Visual Studio <version>

Each individual sample has its own set of solution files in its directory:

To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used.

Note: Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (Tools > Options...). Check DirectX Dependencies section for details."

Linux

The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:

$ cd <sample_dir>
$ make

The samples makefiles can take advantage of certain options:

  • TARGET_ARCH= - cross-compile targeting a specific architecture. Allowed architectures are x86_64, ppc64le, armv7l. By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.
    $ make TARGET_ARCH=x86_64
    $ make TARGET_ARCH=ppc64le
    $ make TARGET_ARCH=armv7l
    See here for more details.

  • dbg=1 - build with debug symbols

    $ make dbg=1
    
  • SMS="A B ..." - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".

    $ make SMS="50 60"
    
  • HOST_COMPILER=<host_compiler> - override the default g++ host compiler. See the Linux Installation Guide for a list of supported host compilers.

    $ make HOST_COMPILER=g++

Mac

The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:

$ cd <sample_dir>
$ make

The samples makefiles can take advantage of certain options:

  • dbg=1 - build with debug symbols

    $ make dbg=1
    
  • SMS="A B ..." - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".

    $ make SMS="A B ..."
    
  • HOST_COMPILER=<host_compiler> - override the default clang host compiler. See the Mac Installation Guide for a list of supported host compilers.

    $ make HOST_COMPILER=clang
    

References (for more details)