forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ccnet.py
174 lines (152 loc) · 6.78 KB
/
ccnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class CCNet(nn.Layer):
"""
The CCNet implementation based on PaddlePaddle.
The original article refers to
Zilong Huang, et al. "CCNet: Criss-Cross Attention for Semantic Segmentation"
(https://arxiv.org/abs/1811.11721)
Args:
num_classes (int): The unique number of target classes.
backbone (paddle.nn.Layer): Backbone network, currently support Resnet18_vd/Resnet34_vd/Resnet50_vd/Resnet101_vd.
backbone_indices (tuple, list, optional): Two values in the tuple indicate the indices of output of backbone. Default: (2, 3).
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
dropout_prob (float, optional): The probability of dropout. Default: 0.0.
recurrence (int, optional): The number of recurrent operations. Defautl: 1.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(2, 3),
enable_auxiliary_loss=True,
dropout_prob=0.0,
recurrence=1,
align_corners=False,
pretrained=None):
super().__init__()
self.enable_auxiliary_loss = enable_auxiliary_loss
self.recurrence = recurrence
self.align_corners = align_corners
self.backbone = backbone
self.backbone_indices = backbone_indices
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
if enable_auxiliary_loss:
self.aux_head = layers.AuxLayer(
backbone_channels[0],
512,
num_classes,
dropout_prob=dropout_prob)
self.head = RCCAModule(
backbone_channels[1],
512,
num_classes,
dropout_prob=dropout_prob,
recurrence=recurrence)
self.pretrained = pretrained
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
def forward(self, x):
feat_list = self.backbone(x)
logit_list = []
output = self.head(feat_list[self.backbone_indices[-1]])
logit_list.append(output)
if self.training and self.enable_auxiliary_loss:
aux_out = self.aux_head(feat_list[self.backbone_indices[-2]])
logit_list.append(aux_out)
return [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
class RCCAModule(nn.Layer):
def __init__(self,
in_channels,
out_channels,
num_classes,
dropout_prob=0.1,
recurrence=1):
super().__init__()
inter_channels = in_channels // 4
self.recurrence = recurrence
self.conva = layers.ConvBNLeakyReLU(
in_channels, inter_channels, 3, padding=1, bias_attr=False)
self.cca = CrissCrossAttention(inter_channels)
self.convb = layers.ConvBNLeakyReLU(
inter_channels, inter_channels, 3, padding=1, bias_attr=False)
self.out = layers.AuxLayer(
in_channels + inter_channels,
out_channels,
num_classes,
dropout_prob=dropout_prob)
def forward(self, x):
feat = self.conva(x)
for i in range(self.recurrence):
feat = self.cca(feat)
feat = self.convb(feat)
output = self.out(paddle.concat([x, feat], axis=1))
return output
class CrissCrossAttention(nn.Layer):
def __init__(self, in_channels):
super().__init__()
self.q_conv = nn.Conv2D(in_channels, in_channels // 8, kernel_size=1)
self.k_conv = nn.Conv2D(in_channels, in_channels // 8, kernel_size=1)
self.v_conv = nn.Conv2D(in_channels, in_channels, kernel_size=1)
self.softmax = nn.Softmax(axis=3)
self.gamma = self.create_parameter(
shape=(1, ), default_initializer=nn.initializer.Constant(0))
self.inf_tensor = paddle.full(shape=(1, ), fill_value=float('inf'))
def forward(self, x):
b, c, h, w = paddle.shape(x)
proj_q = self.q_conv(x)
proj_q_h = proj_q.transpose([0, 3, 1, 2]).reshape(
[b * w, -1, h]).transpose([0, 2, 1])
proj_q_w = proj_q.transpose([0, 2, 1, 3]).reshape(
[b * h, -1, w]).transpose([0, 2, 1])
proj_k = self.k_conv(x)
proj_k_h = proj_k.transpose([0, 3, 1, 2]).reshape([b * w, -1, h])
proj_k_w = proj_k.transpose([0, 2, 1, 3]).reshape([b * h, -1, w])
proj_v = self.v_conv(x)
proj_v_h = proj_v.transpose([0, 3, 1, 2]).reshape([b * w, -1, h])
proj_v_w = proj_v.transpose([0, 2, 1, 3]).reshape([b * h, -1, w])
energy_h = (paddle.bmm(proj_q_h, proj_k_h) + self.Inf(b, h, w)).reshape(
[b, w, h, h]).transpose([0, 2, 1, 3])
energy_w = paddle.bmm(proj_q_w, proj_k_w).reshape([b, h, w, w])
concate = self.softmax(paddle.concat([energy_h, energy_w], axis=3))
attn_h = concate[:, :, :, 0:h].transpose([0, 2, 1, 3]).reshape(
[b * w, h, h])
attn_w = concate[:, :, :, h:h + w].reshape([b * h, w, w])
out_h = paddle.bmm(proj_v_h, attn_h.transpose([0, 2, 1])).reshape(
[b, w, -1, h]).transpose([0, 2, 3, 1])
out_w = paddle.bmm(proj_v_w, attn_w.transpose([0, 2, 1])).reshape(
[b, h, -1, w]).transpose([0, 2, 1, 3])
return self.gamma * (out_h + out_w) + x
def Inf(self, B, H, W):
return -paddle.tile(
paddle.diag(paddle.tile(self.inf_tensor, [H]), 0).unsqueeze(0),
[B * W, 1, 1])