forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddrnet.py
403 lines (361 loc) · 14 KB
/
ddrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager, param_init
from paddleseg.models import layers
from paddleseg.utils import utils
class DualResNet(nn.Layer):
"""
The DDRNet implementation based on PaddlePaddle.
The original article refers to
Yuanduo Hong, Huihui Pan, Weichao Sun, et al. "Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes"
(https://arxiv.org/abs/2101.06085)
Args:
num_classes (int): The unique number of target classes.
in_channels (int, optional): Number of input channels. Default: 3.
block_layers (list, tuple): The numbers of layers in different blocks. Default: [2, 2, 2, 2].
planes (int): Base channels in network. Default: 64.
spp_planes (int): Branch channels for DAPPM. Default: 128.
head_planes (int): Mid channels of segmentation head. Default: 128.
enable_auxiliary_loss (bool): Whether use auxiliary head for stage3. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
in_channels=3,
block_layers=[2, 2, 2, 2],
planes=64,
spp_planes=128,
head_planes=128,
enable_auxiliary_loss=False,
pretrained=None):
super().__init__()
highres_planes = planes * 2
self.enable_auxiliary_loss = enable_auxiliary_loss
self.conv1 = nn.Sequential(
layers.ConvBNReLU(
in_channels, planes, kernel_size=3, stride=2, padding=1),
layers.ConvBNReLU(
planes, planes, kernel_size=3, stride=2, padding=1), )
self.relu = nn.ReLU()
self.layer1 = self._make_layers(BasicBlock, planes, planes,
block_layers[0])
self.layer2 = self._make_layers(
BasicBlock, planes, planes * 2, block_layers[1], stride=2)
self.layer3 = self._make_layers(
BasicBlock, planes * 2, planes * 4, block_layers[2], stride=2)
self.layer4 = self._make_layers(
BasicBlock, planes * 4, planes * 8, block_layers[3], stride=2)
self.compression3 = layers.ConvBN(
planes * 4, highres_planes, kernel_size=1, bias_attr=False)
self.compression4 = layers.ConvBN(
planes * 8, highres_planes, kernel_size=1, bias_attr=False)
self.down3 = layers.ConvBN(
highres_planes,
planes * 4,
kernel_size=3,
stride=2,
bias_attr=False)
self.down4 = nn.Sequential(
layers.ConvBNReLU(
highres_planes,
planes * 4,
kernel_size=3,
stride=2,
padding=1,
bias_attr=False),
layers.ConvBN(
planes * 4,
planes * 8,
kernel_size=3,
stride=2,
padding=1,
bias_attr=False))
self.layer3_ = self._make_layers(BasicBlock, planes * 2, highres_planes,
2)
self.layer4_ = self._make_layers(BasicBlock, highres_planes,
highres_planes, 2)
self.layer5_ = self._make_layers(Bottleneck, highres_planes,
highres_planes, 1)
self.layer5 = self._make_layers(
Bottleneck, planes * 8, planes * 8, 1, stride=2)
self.spp = DAPPM(planes * 16, spp_planes, planes * 4)
if self.enable_auxiliary_loss:
self.aux_head = DDRNetHead(highres_planes, head_planes, num_classes)
self.head = DDRNetHead(planes * 4, head_planes, num_classes)
self.pretrained = pretrained
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
else:
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
param_init.kaiming_normal_init(m.weight)
elif isinstance(m, nn.BatchNorm2D):
param_init.constant_init(m.weight, value=1)
param_init.constant_init(m.bias, value=0)
def _make_layers(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias_attr=False),
nn.BatchNorm2D(planes * block.expansion), )
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
if i == (blocks - 1):
layers.append(block(inplanes, planes, stride=1, no_relu=True))
else:
layers.append(block(inplanes, planes, stride=1, no_relu=False))
return nn.Sequential(*layers)
def forward(self, x):
n, c, h, w = paddle.shape(x)
width_output = w // 8
height_output = h // 8
x = self.conv1(x)
stage1_out = self.layer1(x)
stage2_out = self.layer2(self.relu(stage1_out))
stage3_out = self.layer3(self.relu(stage2_out))
stage3_out_dual = self.layer3_(self.relu(stage2_out))
x = stage3_out + self.down3(self.relu(stage3_out_dual))
stage3_merge = stage3_out_dual + F.interpolate(
self.compression3(self.relu(stage3_out)),
size=[height_output, width_output],
mode='bilinear')
stage4_out = self.layer4(self.relu(x))
stage4_out_dual = self.layer4_(self.relu(stage3_merge))
x = stage4_out + self.down4(self.relu(stage4_out_dual))
stage4_merge = stage4_out_dual + F.interpolate(
self.compression4(self.relu(stage4_out)),
size=[height_output, width_output],
mode='bilinear')
stage5_out_dual = self.layer5_(self.relu(stage4_merge))
x = F.interpolate(
self.spp(self.layer5(self.relu(x))),
size=[height_output, width_output],
mode='bilinear')
output = self.head(x + stage5_out_dual)
logit_list = []
logit_list.append(output)
if self.enable_auxiliary_loss:
aux_out = self.aux_head(stage3_merge)
logit_list.append(aux_out)
return [
F.interpolate(
logit, [h, w], mode='bilinear') for logit in logit_list
]
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self,
inplanes,
planes,
stride=1,
downsample=None,
no_relu=False):
super().__init__()
self.conv_bn_relu = layers.ConvBNReLU(
inplanes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False)
self.relu = nn.ReLU()
self.conv_bn = layers.ConvBN(
planes, planes, kernel_size=3, stride=1, padding=1, bias_attr=False)
self.downsample = downsample
self.stride = stride
self.no_relu = no_relu
def forward(self, x):
residual = x
out = self.conv_bn_relu(x)
out = self.conv_bn(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.no_relu:
return out
else:
return self.relu(out)
class Bottleneck(nn.Layer):
expansion = 2
def __init__(self,
inplanes,
planes,
stride=1,
downsample=None,
no_relu=True):
super().__init__()
self.conv_bn_relu1 = layers.ConvBNReLU(
inplanes, planes, kernel_size=1, bias_attr=False)
self.conv_bn_relu2 = layers.ConvBNReLU(
planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False)
self.conv_bn = layers.ConvBN(
planes, planes * self.expansion, kernel_size=1, bias_attr=False)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
self.no_relu = no_relu
def forward(self, x):
residual = x
out = self.conv_bn_relu1(x)
out = self.conv_bn_relu2(out)
out = self.conv_bn(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.no_relu:
return out
else:
return self.relu(out)
class DAPPM(nn.Layer):
def __init__(self, inplanes, branch_planes, outplanes):
super().__init__()
self.scale1 = nn.Sequential(
nn.AvgPool2D(
kernel_size=5, stride=2, padding=2),
layers.SyncBatchNorm(inplanes),
nn.ReLU(),
nn.Conv2D(
inplanes, branch_planes, kernel_size=1, bias_attr=False), )
self.scale2 = nn.Sequential(
nn.AvgPool2D(
kernel_size=9, stride=4, padding=4),
layers.SyncBatchNorm(inplanes),
nn.ReLU(),
nn.Conv2D(
inplanes, branch_planes, kernel_size=1, bias_attr=False), )
self.scale3 = nn.Sequential(
nn.AvgPool2D(
kernel_size=17, stride=8, padding=8),
layers.SyncBatchNorm(inplanes),
nn.ReLU(),
nn.Conv2D(
inplanes, branch_planes, kernel_size=1, bias_attr=False), )
self.scale4 = nn.Sequential(
nn.AdaptiveAvgPool2D((1, 1)),
layers.SyncBatchNorm(inplanes),
nn.ReLU(),
nn.Conv2D(
inplanes, branch_planes, kernel_size=1, bias_attr=False), )
self.scale0 = nn.Sequential(
layers.SyncBatchNorm(inplanes),
nn.ReLU(),
nn.Conv2D(
inplanes, branch_planes, kernel_size=1, bias_attr=False), )
self.process1 = nn.Sequential(
layers.SyncBatchNorm(branch_planes),
nn.ReLU(),
nn.Conv2D(
branch_planes,
branch_planes,
kernel_size=3,
padding=1,
bias_attr=False), )
self.process2 = nn.Sequential(
layers.SyncBatchNorm(branch_planes),
nn.ReLU(),
nn.Conv2D(
branch_planes,
branch_planes,
kernel_size=3,
padding=1,
bias_attr=False), )
self.process3 = nn.Sequential(
layers.SyncBatchNorm(branch_planes),
nn.ReLU(),
nn.Conv2D(
branch_planes,
branch_planes,
kernel_size=3,
padding=1,
bias_attr=False), )
self.process4 = nn.Sequential(
layers.SyncBatchNorm(branch_planes),
nn.ReLU(),
nn.Conv2D(
branch_planes,
branch_planes,
kernel_size=3,
padding=1,
bias_attr=False), )
self.compression = nn.Sequential(
layers.SyncBatchNorm(branch_planes * 5),
nn.ReLU(),
nn.Conv2D(
branch_planes * 5, outplanes, kernel_size=1, bias_attr=False))
self.shortcut = nn.Sequential(
layers.SyncBatchNorm(inplanes),
nn.ReLU(),
nn.Conv2D(
inplanes, outplanes, kernel_size=1, bias_attr=False))
def forward(self, x):
n, c, h, w = paddle.shape(x)
x0 = self.scale0(x)
x1 = self.process1(
F.interpolate(
self.scale1(x), size=[h, w], mode='bilinear') + x0)
x2 = self.process2(
F.interpolate(
self.scale2(x), size=[h, w], mode='bilinear') + x1)
x3 = self.process3(
F.interpolate(
self.scale3(x), size=[h, w], mode='bilinear') + x2)
x4 = self.process4(
F.interpolate(
self.scale4(x), size=[h, w], mode='bilinear') + x3)
out = self.compression(paddle.concat([x0, x1, x2, x3, x4],
1)) + self.shortcut(x)
return out
class DDRNetHead(nn.Layer):
def __init__(self, inplanes, interplanes, outplanes, scale_factor=None):
super().__init__()
self.bn1 = nn.BatchNorm2D(inplanes)
self.relu = nn.ReLU()
self.conv_bn_relu = layers.ConvBNReLU(
inplanes, interplanes, kernel_size=3, padding=1, bias_attr=False)
self.conv = nn.Conv2D(
interplanes, outplanes, kernel_size=1, padding=0, bias_attr=True)
self.scale_factor = scale_factor
def forward(self, x):
x = self.bn1(x)
x = self.relu(x)
x = self.conv_bn_relu(x)
out = self.conv(x)
if self.scale_factor is not None:
out = F.interpolate(
out, scale_factor=self.scale_factor, mode='bilinear')
return out
@manager.MODELS.add_component
def DDRNet_23(**kwargs):
return DualResNet(
block_layers=[2, 2, 2, 2],
planes=64,
spp_planes=128,
head_planes=128,
**kwargs)