forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fast_scnn.py
326 lines (279 loc) · 11.7 KB
/
fast_scnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle.nn.functional as F
import paddle
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
__all__ = ['FastSCNN']
@manager.MODELS.add_component
class FastSCNN(nn.Layer):
"""
The FastSCNN implementation based on PaddlePaddle.
As mentioned in the original paper, FastSCNN is a real-time segmentation algorithm (123.5fps)
even for high resolution images (1024x2048).
The original article refers to
Poudel, Rudra PK, et al. "Fast-scnn: Fast semantic segmentation network"
(https://arxiv.org/pdf/1902.04502.pdf).
Args:
num_classes (int): The unique number of target classes.
in_channels (int, optional): The channels of input image. Default: 3.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss.
If true, auxiliary loss will be added after LearningToDownsample module. Default: False.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
in_channels=3,
enable_auxiliary_loss=True,
align_corners=False,
pretrained=None):
super().__init__()
self.learning_to_downsample = LearningToDownsample(in_channels, 32, 48,
64)
self.global_feature_extractor = GlobalFeatureExtractor(
in_channels=64,
block_channels=[64, 96, 128],
out_channels=128,
expansion=6,
num_blocks=[3, 3, 3],
align_corners=True)
self.feature_fusion = FeatureFusionModule(64, 128, 128, align_corners)
self.classifier = Classifier(128, num_classes)
if enable_auxiliary_loss:
self.auxlayer = layers.AuxLayer(64, 32, num_classes)
self.enable_auxiliary_loss = enable_auxiliary_loss
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
logit_list = []
input_size = paddle.shape(x)[2:]
higher_res_features = self.learning_to_downsample(x)
x = self.global_feature_extractor(higher_res_features)
x = self.feature_fusion(higher_res_features, x)
logit = self.classifier(x)
logit = F.interpolate(
logit,
input_size,
mode='bilinear',
align_corners=self.align_corners)
logit_list.append(logit)
if self.enable_auxiliary_loss:
auxiliary_logit = self.auxlayer(higher_res_features)
auxiliary_logit = F.interpolate(
auxiliary_logit,
input_size,
mode='bilinear',
align_corners=self.align_corners)
logit_list.append(auxiliary_logit)
return logit_list
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class LearningToDownsample(nn.Layer):
"""
Learning to downsample module.
This module consists of three downsampling blocks (one conv and two separable conv)
Args:
dw_channels1 (int, optional): The input channels of the first sep conv. Default: 32.
dw_channels2 (int, optional): The input channels of the second sep conv. Default: 48.
out_channels (int, optional): The output channels of LearningToDownsample module. Default: 64.
"""
def __init__(self,
in_channels=3,
dw_channels1=32,
dw_channels2=48,
out_channels=64):
super(LearningToDownsample, self).__init__()
self.conv_bn_relu = layers.ConvBNReLU(
in_channels=in_channels,
out_channels=dw_channels1,
kernel_size=3,
stride=2)
self.dsconv_bn_relu1 = layers.SeparableConvBNReLU(
in_channels=dw_channels1,
out_channels=dw_channels2,
kernel_size=3,
stride=2,
padding=1)
self.dsconv_bn_relu2 = layers.SeparableConvBNReLU(
in_channels=dw_channels2,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1)
def forward(self, x):
x = self.conv_bn_relu(x)
x = self.dsconv_bn_relu1(x)
x = self.dsconv_bn_relu2(x)
return x
class GlobalFeatureExtractor(nn.Layer):
"""
Global feature extractor module.
This module consists of three InvertedBottleneck blocks (like inverted residual introduced by MobileNetV2) and
a PPModule (introduced by PSPNet).
Args:
in_channels (int): The number of input channels to the module.
block_channels (tuple): A tuple represents output channels of each bottleneck block.
out_channels (int): The number of output channels of the module. Default:
expansion (int): The expansion factor in bottleneck.
num_blocks (tuple): It indicates the repeat time of each bottleneck.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
"""
def __init__(self, in_channels, block_channels, out_channels, expansion,
num_blocks, align_corners):
super(GlobalFeatureExtractor, self).__init__()
self.bottleneck1 = self._make_layer(InvertedBottleneck, in_channels,
block_channels[0], num_blocks[0],
expansion, 2)
self.bottleneck2 = self._make_layer(
InvertedBottleneck, block_channels[0], block_channels[1],
num_blocks[1], expansion, 2)
self.bottleneck3 = self._make_layer(
InvertedBottleneck, block_channels[1], block_channels[2],
num_blocks[2], expansion, 1)
self.ppm = layers.PPModule(
block_channels[2],
out_channels,
bin_sizes=(1, 2, 3, 6),
dim_reduction=True,
align_corners=align_corners)
def _make_layer(self,
block,
in_channels,
out_channels,
blocks,
expansion=6,
stride=1):
layers = []
layers.append(block(in_channels, out_channels, expansion, stride))
for _ in range(1, blocks):
layers.append(block(out_channels, out_channels, expansion, 1))
return nn.Sequential(*layers)
def forward(self, x):
x = self.bottleneck1(x)
x = self.bottleneck2(x)
x = self.bottleneck3(x)
x = self.ppm(x)
return x
class InvertedBottleneck(nn.Layer):
"""
Single Inverted bottleneck implementation.
Args:
in_channels (int): The number of input channels to bottleneck block.
out_channels (int): The number of output channels of bottleneck block.
expansion (int, optional). The expansion factor in bottleneck. Default: 6.
stride (int, optional). The stride used in depth-wise conv. Defalt: 2.
"""
def __init__(self, in_channels, out_channels, expansion=6, stride=2):
super().__init__()
self.use_shortcut = stride == 1 and in_channels == out_channels
expand_channels = in_channels * expansion
self.block = nn.Sequential(
# pw
layers.ConvBNReLU(
in_channels=in_channels,
out_channels=expand_channels,
kernel_size=1,
bias_attr=False),
# dw
layers.ConvBNReLU(
in_channels=expand_channels,
out_channels=expand_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=expand_channels,
bias_attr=False),
# pw-linear
layers.ConvBN(
in_channels=expand_channels,
out_channels=out_channels,
kernel_size=1,
bias_attr=False))
def forward(self, x):
out = self.block(x)
if self.use_shortcut:
out = x + out
return out
class FeatureFusionModule(nn.Layer):
"""
Feature Fusion Module Implementation.
This module fuses high-resolution feature and low-resolution feature.
Args:
high_in_channels (int): The channels of high-resolution feature (output of LearningToDownsample).
low_in_channels (int): The channels of low-resolution feature (output of GlobalFeatureExtractor).
out_channels (int): The output channels of this module.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.
"""
def __init__(self, high_in_channels, low_in_channels, out_channels,
align_corners):
super().__init__()
# Only depth-wise conv
self.dwconv = layers.ConvBNReLU(
in_channels=low_in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
groups=128,
bias_attr=False)
self.conv_low_res = layers.ConvBN(out_channels, out_channels, 1)
self.conv_high_res = layers.ConvBN(high_in_channels, out_channels, 1)
self.align_corners = align_corners
def forward(self, high_res_input, low_res_input):
low_res_input = F.interpolate(
low_res_input,
paddle.shape(high_res_input)[2:],
mode='bilinear',
align_corners=self.align_corners)
low_res_input = self.dwconv(low_res_input)
low_res_input = self.conv_low_res(low_res_input)
high_res_input = self.conv_high_res(high_res_input)
x = high_res_input + low_res_input
return F.relu(x)
class Classifier(nn.Layer):
"""
The Classifier module implementation.
This module consists of two depth-wise conv and one conv.
Args:
input_channels (int): The input channels to this module.
num_classes (int): The unique number of target classes.
"""
def __init__(self, input_channels, num_classes):
super().__init__()
self.dsconv1 = layers.SeparableConvBNReLU(
in_channels=input_channels,
out_channels=input_channels,
kernel_size=3,
padding=1)
self.dsconv2 = layers.SeparableConvBNReLU(
in_channels=input_channels,
out_channels=input_channels,
kernel_size=3,
padding=1)
self.conv = nn.Conv2D(
in_channels=input_channels, out_channels=num_classes, kernel_size=1)
self.dropout = nn.Dropout(p=0.1) # dropout_prob
def forward(self, x):
x = self.dsconv1(x)
x = self.dsconv2(x)
x = self.dropout(x)
x = self.conv(x)
return x