-
Notifications
You must be signed in to change notification settings - Fork 0
/
run-vnet-mri.sh
26 lines (21 loc) · 1.05 KB
/
run-vnet-mri.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# set your GPU ID here
export CUDA_VISIBLE_DEVICES=7
# set the config file name and save directory here
config_name=vnet_mri_spine_seg_128_128_12_15k
yml=mri_spine_seg/${config_name}
save_dir_all=saved_model
save_dir=saved_model/${config_name}_0324_5e-1_big_rmresizecrop_class20
mkdir -p $save_dir
# Train the model: see the train.py for detailed explanation on script args
python3 train.py --config configs/${yml}.yml \
--save_dir $save_dir \
--save_interval 500 --log_iters 100 \
--num_workers 6 --do_eval --use_vdl \
--keep_checkpoint_max 5 --seed 0 >> $save_dir/train.log
# Validate the model: see the val.py for detailed explanation on script args
python3 val.py --config configs/${yml}.yml \
--save_dir $save_dir/best_model --model_path $save_dir/best_model/model.pdparams
# export the model
python export.py --config configs/${yml}.yml --model_path $save_dir/best_model/model.pdparams
# infer the model
python deploy/python/infer.py --config output/deploy.yaml --image_path data/MRSpineSeg/MRI_spine_seg_phase0_class3/images/Case14.npy --benchmark True