forked from gregseth/suncalc-php
-
Notifications
You must be signed in to change notification settings - Fork 0
/
suncalc.php
340 lines (254 loc) · 9.57 KB
/
suncalc.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
<?php
namespace AurorasLive;
use DateInterval;
/*
SunCalc is a PHP library for calculating sun/moon position and light phases.
https://github.com/gregseth/suncalc-php
Based on Vladimir Agafonkin's JavaScript library.
https://github.com/mourner/suncalc
Sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html
formulas.
Moon calculations are based on http://aa.quae.nl/en/reken/hemelpositie.html
formulas.
Calculations for illumination parameters of the moon are based on
http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and Chapter 48
of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell,
Richmond) 1998.
Calculations for moon rise/set times are based on
http://www.stargazing.net/kepler/moonrise.html article.
*/
// shortcuts for easier to read formulas
define('PI', M_PI);
define('rad', PI / 180);
// date/time constants and conversions
define('daySec', 60 * 60 * 24);
define('J1970', 2440588);
define('J2000', 2451545);
// general calculations for position
define('e', rad * 23.4397); // obliquity of the Earth
define('J0', 0.0009);
function toJulian($date) { return $date->getTimestamp() / daySec - 0.5 + J1970; }
function fromJulian($j, $d) {
if (!is_nan($j)) {
$dt = new \DateTime("@".round(($j + 0.5 - J1970) * daySec));
$dt->setTimezone($d->getTimezone());
return $dt;
}
}
function toDays($date) { return toJulian($date) - J2000; }
function rightAscension($l, $b) { return atan2(sin($l) * cos(e) - tan($b) * sin(e), cos($l)); }
function declination($l, $b) { return asin(sin($b) * cos(e) + cos($b) * sin(e) * sin($l)); }
function azimuth($H, $phi, $dec) { return atan2(sin($H), cos($H) * sin($phi) - tan($dec) * cos($phi)); }
function altitude($H, $phi, $dec) { return asin(sin($phi) * sin($dec) + cos($phi) * cos($dec) * cos($H)); }
function siderealTime($d, $lw) { return rad * (280.16 + 360.9856235 * $d) - $lw; }
// calculations for sun times
function julianCycle($d, $lw) { return round($d - J0 - $lw / (2 * PI)); }
function approxTransit($Ht, $lw, $n) { return J0 + ($Ht + $lw) / (2 * PI) + $n; }
function solarTransitJ($ds, $M, $L) { return J2000 + $ds + 0.0053 * sin($M) - 0.0069 * sin(2 * $L); }
function hourAngle($h, $phi, $d) { return acos((sin($h) - sin($phi) * sin($d)) / (cos($phi) * cos($d))); }
// returns set time for the given sun altitude
function getSetJ($h, $lw, $phi, $dec, $n, $M, $L) {
$w = hourAngle($h, $phi, $dec);
$a = approxTransit($w, $lw, $n);
return solarTransitJ($a, $M, $L);
}
// general sun calculations
function solarMeanAnomaly($d) { return rad * (357.5291 + 0.98560028 * $d); }
function eclipticLongitude($M) {
$C = rad * (1.9148 * sin($M) + 0.02 * sin(2 * $M) + 0.0003 * sin(3 * $M)); // equation of center
$P = rad * 102.9372; // perihelion of the Earth
return $M + $C + $P + PI;
}
function hoursLater($date, $h) {
$dt = clone $date;
return $dt->add( new DateInterval('PT'.round($h*3600).'S') );
}
class DecRa {
public $dec;
public $ra;
function __construct($d, $r) {
$this->dec = $d;
$this->ra = $r;
}
}
class DecRaDist extends DecRa {
public $dist;
function __construct($d, $r, $dist) {
parent::__construct($d, $r);
$this->dist = $dist;
}
}
class AzAlt {
public $azimuth;
public $altitude;
function __construct($az, $alt) {
$this->azimuth = $az;
$this->altitude = $alt;
}
}
class AzAltDist extends AzAlt {
public $dist;
function __construct($az, $alt, $dist) {
parent::__construct($az, $alt);
$this->dist = $dist;
}
}
function sunCoords($d) {
$M = solarMeanAnomaly($d);
$L = eclipticLongitude($M);
return new DecRa(
declination($L, 0),
rightAscension($L, 0)
);
}
function moonCoords($d) { // geocentric ecliptic coordinates of the moon
$L = rad * (218.316 + 13.176396 * $d); // ecliptic longitude
$M = rad * (134.963 + 13.064993 * $d); // mean anomaly
$F = rad * (93.272 + 13.229350 * $d); // mean distance
$l = $L + rad * 6.289 * sin($M); // longitude
$b = rad * 5.128 * sin($F); // latitude
$dt = 385001 - 20905 * cos($M); // distance to the moon in km
return new DecRaDist(
declination($l, $b),
rightAscension($l, $b),
$dt
);
}
class SunCalc {
var $date;
var $lat;
var $lng;
// sun times configuration (angle, morning name, evening name)
private $times = [
[-0.833, 'sunrise', 'sunset' ],
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
[ -6, 'dawn', 'dusk' ],
[ -12, 'nauticalDawn', 'nauticalDusk'],
[ -18, 'nightEnd', 'night' ],
[ 6, 'goldenHourEnd', 'goldenHour' ]
];
// adds a custom time to the times config
private function addTime($angle, $riseName, $setName) {
$this->times[] = [$angle, $riseName, $setName];
}
function __construct($date, $lat, $lng) {
$this->date = $date;
$this->lat = $lat;
$this->lng = $lng;
}
// calculates sun position for a given date and latitude/longitude
function getSunPosition() {
$lw = rad * -$this->lng;
$phi = rad * $this->lat;
$d = toDays($this->date);
$c = sunCoords($d);
$H = siderealTime($d, $lw) - $c->ra;
return new AzAlt(
azimuth($H, $phi, $c->dec),
altitude($H, $phi, $c->dec)
);
}
// calculates sun times for a given date and latitude/longitude
function getSunTimes() {
$lw = rad * -$this->lng;
$phi = rad * $this->lat;
$d = toDays($this->date);
$n = julianCycle($d, $lw);
$ds = approxTransit(0, $lw, $n);
$M = solarMeanAnomaly($ds);
$L = eclipticLongitude($M);
$dec = declination($L, 0);
$Jnoon = solarTransitJ($ds, $M, $L);
$result = [
'solarNoon'=> fromJulian($Jnoon, $this->date),
'nadir' => fromJulian($Jnoon - 0.5, $this->date)
];
for ($i = 0, $len = count($this->times); $i < $len; $i += 1) {
$time = $this->times[$i];
$Jset = getSetJ($time[0] * rad, $lw, $phi, $dec, $n, $M, $L);
$Jrise = $Jnoon - ($Jset - $Jnoon);
$result[$time[1]] = fromJulian($Jrise, $this->date);
$result[$time[2]] = fromJulian($Jset, $this->date);
}
return $result;
}
function getMoonPosition($date) {
$lw = rad * -$this->lng;
$phi = rad * $this->lat;
$d = toDays($date);
$c = moonCoords($d);
$H = siderealTime($d, $lw) - $c->ra;
$h = altitude($H, $phi, $c->dec);
// altitude correction for refraction
$h = $h + rad * 0.017 / tan($h + rad * 10.26 / ($h + rad * 5.10));
return new AzAltDist(
azimuth($H, $phi, $c->dec),
$h,
$c->dist
);
}
function getMoonIllumination() {
$d = toDays($this->date);
$s = sunCoords($d);
$m = moonCoords($d);
$sdist = 149598000; // distance from Earth to Sun in km
$phi = acos(sin($s->dec) * sin($m->dec) + cos($s->dec) * cos($m->dec) * cos($s->ra - $m->ra));
$inc = atan2($sdist * sin($phi), $m->dist - $sdist * cos($phi));
$angle = atan2(cos($s->dec) * sin($s->ra - $m->ra), sin($s->dec) * cos($m->dec) - cos($s->dec) * sin($m->dec) * cos($s->ra - $m->ra));
return [
'fraction' => (1 + cos($inc)) / 2,
'phase' => 0.5 + 0.5 * $inc * ($angle < 0 ? -1 : 1) / PI,
'angle' => $angle
];
}
function getMoonTimes($inUTC=false) {
$t = clone $this->date;
if ($inUTC) $t->setTimezone(new \DateTimeZone('UTC'));
$t->setTime(0, 0, 0);
$hc = 0.133 * rad;
$h0 = $this->getMoonPosition($t, $this->lat, $this->lng)->altitude - $hc;
$rise = 0;
$set = 0;
// go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
for ($i = 1; $i <= 24; $i += 2) {
$h1 = $this->getMoonPosition(hoursLater($t, $i), $this->lat, $this->lng)->altitude - $hc;
$h2 = $this->getMoonPosition(hoursLater($t, $i + 1), $this->lat, $this->lng)->altitude - $hc;
$a = ($h0 + $h2) / 2 - $h1;
$b = ($h2 - $h0) / 2;
$xe = -$b / (2 * $a);
$ye = ($a * $xe + $b) * $xe + $h1;
$d = $b * $b - 4 * $a * $h1;
$roots = 0;
if ($d >= 0) {
$dx = sqrt($d) / (abs($a) * 2);
$x1 = $xe - $dx;
$x2 = $xe + $dx;
if (abs($x1) <= 1) $roots++;
if (abs($x2) <= 1) $roots++;
if ($x1 < -1) $x1 = $x2;
}
if ($roots === 1) {
if ($h0 < 0) $rise = $i + $x1;
else $set = $i + $x1;
} else if ($roots === 2) {
$rise = $i + ($ye < 0 ? $x2 : $x1);
$set = $i + ($ye < 0 ? $x1 : $x2);
}
if ($rise != 0 && $set != 0) break;
$h0 = $h2;
}
$result = [];
if ($rise != 0) $result['moonrise'] = hoursLater($t, $rise);
if ($set != 0) $result['moonset'] = hoursLater($t, $set);
if ($rise==0 && $set==0) $result[$ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
return $result;
}
}
// tests
/*
$test = new SunCalc(new \DateTime(), 48.85, 2.35);
print_r($test->getSunTimes());
print_r($test->getMoonIllumination());
print_r($test->getMoonTimes());
print_r(getMoonPosition(new \DateTime(), 48.85, 2.35));
*/