-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgpt.txt
281 lines (210 loc) · 9.84 KB
/
gpt.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
1. Preprocessing: Convert your text data into numerical representations that can be fed into the neural network. You can use techniques like word embeddings (e.g., Word2Vec, GloVe) or tokenization methods to represent the text as numerical vectors.
2. Input Encoding: Represent each blog article as a sequence of word embeddings or one-hot encoded vectors. Pad or truncate the sequences to a fixed length so that they can be processed by the CNN.
const word2vec = require('word2vec');
const stopwords = require('stopwords');
const natural = require('natural');
// Example blog article
const blogArticle = `
This is an example blog article. It contains some text with numeric data like 100 mph or 500 kW.
`;
// Tokenize the blog article
const tokens = blogArticle.split(/\s+/);
// Remove stop words
const filteredTokens = tokens.filter(token => !stopwords.english.includes(token.toLowerCase()));
// Initialize Porter Stemmer for word stemming
const stemmer = natural.PorterStemmer;
// Preprocess and tokenize text
const processedTokens = filteredTokens.map(token => {
// Convert to lowercase
const lowerCaseToken = token.toLowerCase();
// Remove non-alphanumeric characters and trim
const cleanedToken = lowerCaseToken.replace(/[^a-zA-Z0-9\s]/g, '').trim();
// If the token contains only digits, keep it as-is (numeric data)
if (/^\d+$/.test(cleanedToken)) {
return cleanedToken;
}
// Stem the token
const stemmedToken = stemmer.stem(cleanedToken);
return stemmedToken;
});
// Load the pre-trained model
const model = word2vec.loadModel('path_to_pretrained_model.bin'); // Replace with actual path
// Fine-tune the model with new words
model.learnMany([processedTokens]);
// Define maximum sequence length
const maxSeqLength = 100;
// Pad or trim the processed tokens (same code as before)
// ...
// Encode the tokenized input
const encodedInput = processedTokens.map(token => {
if (token === '<PAD>') {
return new Array(model.size).fill(0); // Padding token vector
}
return model.getVector(token);
});
console.log(encodedInput);
3. Convolutional Layers: Apply one or more convolutional layers to capture local patterns and features within the text. Each convolutional layer consists of multiple filters that slide over the input and perform convolutions to extract features. The resulting feature maps capture different aspects of the text.
4. Pooling Layers: Intersperse pooling layers (e.g., max pooling) between the convolutional layers to reduce the dimensionality and extract the most salient features from each feature map.
const tf = require('@tensorflow/tfjs-node');
// Sample word embeddings (replace with your actual data)
const wordEmbeddings = [
[0.1, 0.2, 0.3, ...], // Vector representation of word 1
[0.4, 0.5, 0.6, ...], // Vector representation of word 2
// ...
];
// Convert word embeddings to a TensorFlow tensor
const embeddingsTensor = tf.tensor(wordEmbeddings);
// Create a 1D convolutional layer
const convolutionalLayer1 = tf.layers.conv1d({
filters: 32,
kernelSize: 3,
activation: 'relu',
inputShape: [wordEmbeddings.length, wordEmbeddings[0].length]
});
// Apply the first convolutional layer to the embeddings
const convOutput1 = convolutionalLayer1.apply(embeddingsTensor.expandDims(0));
// Create a 1D pooling layer
const poolingLayer1 = tf.layers.maxPooling1d({
poolSize: 2
});
// Apply the first pooling layer to the convolutional output
const pooledOutput1 = poolingLayer1.apply(convOutput1);
// Create a second convolutional layer
const convolutionalLayer2 = tf.layers.conv1d({
filters: 64,
kernelSize: 3,
activation: 'relu'
});
// Apply the second convolutional layer to the pooled output
const convOutput2 = convolutionalLayer2.apply(pooledOutput1);
// Create a second pooling layer
const poolingLayer2 = tf.layers.maxPooling1d({
poolSize: 2
});
// Apply the second pooling layer to the second convolutional output
const pooledOutput2 = poolingLayer2.apply(convOutput2);
// Create a third convolutional layer
const convolutionalLayer3 = tf.layers.conv1d({
filters: 128,
kernelSize: 3,
activation: 'relu'
});
// Apply the third convolutional layer to the second pooled output
const convOutput3 = convolutionalLayer3.apply(pooledOutput2);
// Create a third pooling layer
const poolingLayer3 = tf.layers.maxPooling1d({
poolSize: 2
});
// Apply the third pooling layer to the third convolutional output
const pooledOutput3 = poolingLayer3.apply(convOutput3);
// Print the output shape after all layers
console.log('Final output shape:', pooledOutput3.shape);
5. Flattening and Dense Layers: Flatten the output of the last pooling layer into a one-dimensional vector and connect it to one or more fully connected (dense) layers. These layers learn higher-level representations and classify the input into the desired categories (like or dislike).
6. Output Layer: Use a (softmax) sigmoid activation function in the output layer to produce class probabilities. If you have two classes (like and dislike), the output layer will have two units, and the predicted class will be the one with the highest probability.
const tf = require('@tensorflow/tfjs-node');
// Assuming you have processed and pooled output named 'pooledOutput3'
// Flatten the pooled output
const flattenedOutput = tf.layers.flatten().apply(pooledOutput3);
// Create a dense (fully connected) layer with regularization
const denseLayer = tf.layers.dense({
units: 256, // Number of neurons in the layer
activation: 'relu', // Activation function (e.g., ReLU)
kernelRegularizer: tf.regularizers.l2({ l2: 0.01 }) // L2 regularization
});
// Apply dropout regularization to the dense layer
const dropoutLayer = tf.layers.dropout({
rate: 0.4 // Dropout rate
});
const dropoutOutput = dropoutLayer.apply(denseLayer.apply(flattenedOutput));
// Create the output layer for binary sentiment classification
const outputLayer = tf.layers.dense({
units: 1, // Number of output neurons (1 for binary classification)
activation: 'sigmoid', // Activation function (sigmoid for binary classification)
kernelRegularizer: tf.regularizers.l2({ l2: 0.01 }) // L2 regularization
});
// Apply the output layer to the dropout output
const modelOutput = outputLayer.apply(dropoutOutput);
// Create the model
const model = tf.model({
inputs: pooledOutput3, // Input layer (pooled output from CNN layers)
outputs: modelOutput // Output layer
});
// Compile the model
model.compile({
optimizer: 'adam', // Optimizer algorithm (e.g., Adam)
loss: 'binaryCrossentropy', // Loss function (binary cross-entropy for binary classification)
metrics: ['accuracy'] // Metrics to monitor during training
});
// Define early stopping
const earlyStopping = tf.callbacks.earlyStopping({
monitor: 'val_loss', // Monitor validation loss
patience: 5, // Number of epochs with no improvement before stopping
restoreBestWeights: true // Restore the model to the best weights
});
// Print model summary
model.summary();
// Load and preprocess your dataset
const trainingData = loadAndPreprocessTrainingData(); // Replace with actual loading code
const trainingLabels = loadTrainingLabels(); // Replace with actual loading code
// Train the model with early stopping
model.fit(trainingData, trainingLabels, {
epochs: 100,
batchsize: 32,
validationSplit: 0.2,
callbacks: [earlyStopping]
});
7. Training: Train the network using labeled data (blog articles labeled as like or dislike). Use a suitable loss function such as categorical cross-entropy and optimize the network parameters using gradient descent algorithms like Adam or RMSprop.
const tf = require('@tensorflow/tfjs-node');
// Assume you have the following data
const blogArticles = [
{ embeddings: [0.1, 0.2, 0.3, ...], label: 'liked' },
{ embeddings: [0.4, 0.5, 0.6, ...], label: 'disliked' },
// ... more articles ...
];
// Convert labels to numerical values
const labelsToNumeric = {
'liked': 1,
'disliked': 0
};
// Separate embeddings and labels
const embeddings = blogArticles.map(article => article.embeddings);
const labels = blogArticles.map(article => labelsToNumeric[article.label]);
// Convert to TensorFlow tensors
const embeddingsTensor = tf.tensor(embeddings);
const labelsTensor = tf.tensor(labels);
// Create train and validation splits
const splitRatio = 0.8; // 80% training, 20% validation
const numTrainingExamples = Math.floor(embeddings.length * splitRatio);
const trainingData = embeddingsTensor.slice([0, 0], [numTrainingExamples, -1]);
const trainingLabels = labelsTensor.slice([0], [numTrainingExamples]);
const validationData = embeddingsTensor.slice([numTrainingExamples, 0], [-1, -1]);
const validationLabels = labelsTensor.slice([numTrainingExamples], [-1]);
console.log('Training data shape:', trainingData.shape);
console.log('Training labels shape:', trainingLabels.shape);
console.log('Validation data shape:', validationData.shape);
console.log('Validation labels shape:', validationLabels.shape);
// Define the model architecture (similar to your previous code)
const model = tf.sequential();
model.add(tf.layers.flatten({ inputShape: [embeddings[0].length] }));
model.add(tf.layers.dense({ units: 256, activation: 'relu' }));
model.add(tf.layers.dropout({ rate: 0.4 }));
model.add(tf.layers.dense({ units: 1, activation: 'sigmoid' }));
// Compile the model
model.compile({
optimizer: 'adam',
loss: 'binaryCrossentropy',
metrics: ['accuracy']
});
// Train the model with early stopping
model.fit(trainingData, trainingLabels, {
epochs: 50,
batchSize: 32,
validationData: [validationData, validationLabels],
callbacks: [tf.callbacks.earlyStopping({
monitor: 'val_loss',
patience: 5,
restoreBestWeights: true
})]
}).then(info => {
console.log('Final accuracy on validation data:', info.history.val_accuracy[info.history.val_accuracy.length - 1]);
});