This repository has been archived by the owner on Jun 14, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
295 lines (251 loc) · 8.32 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import signal
import threading
import sys
import re
import pandas as pd
import csv
import improver
from os.path import exists
path_pretrain = 'training/pretrain.csv'
labels = [
'Raw',
'Country',
'RegionType',
'Region',
'CountyType',
'County',
'Included',
'LocalityType',
'Locality',
'StreetType',
'Street',
'HousingType',
'Housing',
'HostelType',
'Hostel',
'HouseNumberType',
'HouseNumber',
'HouseNumberAdditionally',
'SectionType',
'Section',
'ApartmentType',
'Apartment',
'RoomType',
'Room',
'Sector',
'FloorType',
'Floor',
'PostCode',
'Manually',
'NotAddress',
'Comment',
'AdditionalData'
]
##
# INTERRUPT
#
def interrupt(signal, frame):
print('')
print('#'*50)
print('Aborting pretrain!')
sys.exit(0)
##
# SHOW LABELS
#
def show_labels():
print('#' * 50)
print('Labels')
print('#' * 50)
print("| {:<10}| {:<30} |".format('ID', 'NAME'))
for key, item in enumerate(labels[1:]):
print("| {:<10}| {:<30} |".format(key+1, item))
##
# READ LIST
#
def read_list():
data = pd.read_csv('training/raw.csv', sep=";", header=None)
stop = False
skip = False
repeat = True
next_address = False
ready = 1
amount = data.index
for name, item in data.iterrows():
show_labels()
address = improver.improve_address(item[0])
words = re.findall('(?<=\s)\d+\,\s\d+|[a-zA-Zа-яА-ЯіІїЇґҐєЄёЁ0-9.()\/’-№-?]+', address)
word_pos = []
pos = 0
print("#" * 50)
print("Address ({}/{}): {}".format(ready, len(amount), address))
print("#" * 50)
print("|{:<30}| {:<8}| {:<5} |".format('String', 'Start', 'End'))
data = []
for i in range(len(words)):
word = words[i]
pos += address[pos:].index(word)
##
regex = re.finditer("^{0}(?=\\s)|(?<=\\s){0}(?=\\s)|(?<=\\s){0}(?=$)|^{0}(?=\\s)".format(improver.str_to_regex(word)), address)
##
if word in words[i+1:] or word in words[:i]:
word_pos.append(pos)
start = pos
end = start + len(word)
##
duplicate = 0
for a, b in enumerate(data):
if b['string'] == word:
duplicate += 1
##
for a, b in enumerate(list(regex)[duplicate:duplicate + 1]):
if pos != b.start():
start = b.start()
end = start + len(word)
##
print("|{:<30}| {:<8}| {:<5} |".format(word, start, end))
data.append({
'string': word,
'start': start,
'end': end
})
else:
start = pos
end = start + len(word)
##
duplicate = 0
for a, b in enumerate(data):
if b['string'] == word:
duplicate += 1
##
for a, b in enumerate(list(regex)[duplicate:duplicate + 1]):
if pos != b.start():
start = b.start()
end = start + len(word)
##
print("|{:<30}| {:<8}| {:<5} |".format(word, start, end))
data.append({
'string': word,
'start': start,
'end': end
})
pos += 1
##
print(data)
##
while repeat:
for key, item in enumerate(data):
while True:
print("#" * 50)
print("Address: ", address)
print("#")
print("String: ", item['string'])
print("#" * 50)
try:
label = input("Enter label OR (stop(s), skip(enter), repeat(r), next(n)): ")
if label == 'stop' or label == 's':
skip = False
stop = True
repeat = False
elif label == 'skip' or not label:
skip = True
repeat = False
elif label == 'repeat' or label == 'r':
repeat = True
break
elif label == 'next' or label == 'n':
next_address = True
repeat = False
else:
if re.match(r'^\d+$', label):
data[key]['label'] = labels[int(label)]
skip = False
stop = False
repeat = False
break
else:
raise IndexError
except IndexError:
print("#" * 50)
print("Error ID label. Please correct ID label enter")
continue
if skip or stop or next_address:
break
if stop or repeat or next_address:
break
##
print("#" * 50)
print(data)
if next_address is not True:
if stop is not True:
save_data(address, data)
ready += 1
else:
print('Aborting pretrain!')
sys.exit(0)
else:
ready += 1
repeat = True
print("#" * 50)
print('Skip address')
if ready > len(amount):
sys.exit(0)
else:
repeat = True
##
# CREATE COLUMNS
#
def create_columns():
temp = []
for key, item in enumerate(labels): temp.append('')
return dict(zip(labels, temp))
##
# SAVE DATA
#
def save_data(address, data):
last_label = {}
if exists(path_pretrain):
##
columns = create_columns()
##
with open(path_pretrain, 'a') as pretrain:
writer = csv.writer(pretrain, delimiter=';')
columns['Raw'] = address
for key, item in enumerate(data):
if 'label' in item:
label = [{'start': item['start'], 'end': item['end']}]
if len(last_label) and last_label['label'] == item['label']:
last_label['position'].append({'start': item['start'], 'end': item['end']})
columns[item['label']] = last_label['position']
label = last_label['position']
else:
columns[item['label']] = label
last_label = {
'label': item['label'],
'position': label
}
writer.writerow(columns.values())
else:
with open(path_pretrain, 'w') as pretrain:
writer = csv.writer(pretrain, delimiter=';')
columns = create_columns()
writer.writerow(columns.keys())
columns['Raw'] = address
for key, item in enumerate(data):
if 'label' in item:
label = [{'start': item['start'], 'end': item['end']}]
if len(last_label) and last_label['label'] == item['label']:
last_label['position'].append({'start': item['start'], 'end': item['end']})
columns[item['label']] = last_label['position']
label = last_label['position']
else:
columns[item['label']] = label
last_label = {
'label': item['label'],
'position': label
}
writer.writerow(columns.values())
if __name__ == "__main__":
signal.signal(signal.SIGINT, interrupt)
read_list()
forever = threading.Event()
forever.wait()