forked from breizhn/DTLN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
real_time_processing_tf_lite.py
102 lines (90 loc) · 3.88 KB
/
real_time_processing_tf_lite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
This is an example how to implement real time processing of the DTLN tf light
model in python.
Please change the name of the .wav file at line 43 before running the sript.
For .whl files of the tf light runtime go to:
https://www.tensorflow.org/lite/guide/python
Author: Nils L. Westhausen (nils.westhausen@uol.de)
Version: 30.06.2020
This code is licensed under the terms of the MIT-license.
"""
import soundfile as sf
import numpy as np
import tflite_runtime.interpreter as tflite
import time
##########################
# the values are fixed, if you need other values, you have to retrain.
# The sampling rate of 16k is also fix.
block_len = 512
block_shift = 128
# load models
interpreter_1 = tflite.Interpreter(model_path='./pretrained_model/model_1.tflite')
interpreter_1.allocate_tensors()
interpreter_2 = tflite.Interpreter(model_path='./pretrained_model/model_2.tflite')
interpreter_2.allocate_tensors()
# Get input and output tensors.
input_details_1 = interpreter_1.get_input_details()
output_details_1 = interpreter_1.get_output_details()
input_details_2 = interpreter_2.get_input_details()
output_details_2 = interpreter_2.get_output_details()
# create states for the lstms
states_1 = np.zeros(input_details_1[1]['shape']).astype('float32')
states_2 = np.zeros(input_details_2[1]['shape']).astype('float32')
# load audio file at 16k fs (please change)
audio,fs = sf.read('path/to/your/favorite/.wav')
# check for sampling rate
if fs != 16000:
raise ValueError('This model only supports 16k sampling rate.')
# preallocate output audio
out_file = np.zeros((len(audio)))
# create buffer
in_buffer = np.zeros((block_len)).astype('float32')
out_buffer = np.zeros((block_len)).astype('float32')
# calculate number of blocks
num_blocks = (audio.shape[0] - (block_len-block_shift)) // block_shift
time_array = []
# iterate over the number of blcoks
for idx in range(num_blocks):
start_time = time.time()
# shift values and write to buffer
in_buffer[:-block_shift] = in_buffer[block_shift:]
in_buffer[-block_shift:] = audio[idx*block_shift:(idx*block_shift)+block_shift]
# calculate fft of input block
in_block_fft = np.fft.rfft(in_buffer)
in_mag = np.abs(in_block_fft)
in_phase = np.angle(in_block_fft)
# reshape magnitude to input dimensions
in_mag = np.reshape(in_mag, (1,1,-1)).astype('float32')
# set tensors to the first model
interpreter_1.set_tensor(input_details_1[1]['index'], states_1)
interpreter_1.set_tensor(input_details_1[0]['index'], in_mag)
# run calculation
interpreter_1.invoke()
# get the output of the first block
out_mask = interpreter_1.get_tensor(output_details_1[0]['index'])
states_1 = interpreter_1.get_tensor(output_details_1[1]['index'])
# calculate the ifft
estimated_complex = in_mag * out_mask * np.exp(1j * in_phase)
estimated_block = np.fft.irfft(estimated_complex)
# reshape the time domain block
estimated_block = np.reshape(estimated_block, (1,1,-1)).astype('float32')
# set tensors to the second block
interpreter_2.set_tensor(input_details_2[1]['index'], states_2)
interpreter_2.set_tensor(input_details_2[0]['index'], estimated_block)
# run calculation
interpreter_2.invoke()
# get output tensors
out_block = interpreter_2.get_tensor(output_details_2[0]['index'])
states_2 = interpreter_2.get_tensor(output_details_2[1]['index'])
# shift values and write to buffer
out_buffer[:-block_shift] = out_buffer[block_shift:]
out_buffer[-block_shift:] = np.zeros((block_shift))
out_buffer += np.squeeze(out_block)
# write block to output file
out_file[idx*block_shift:(idx*block_shift)+block_shift] = out_buffer[:block_shift]
time_array.append(time.time()-start_time)
# write to .wav file
sf.write('out.wav', out_file, fs)
print('Processing Time [ms]:')
print(np.mean(np.stack(time_array))*1000)
print('Processing finished.')