-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathjoy-caption-latest.py
239 lines (199 loc) · 11.4 KB
/
joy-caption-latest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from PIL import Image
from huggingface_hub import snapshot_download
from pathlib import Path
from transformers import AutoModel, AutoProcessor, AutoTokenizer, AutoModelForCausalLM
import torch
import torch.nn as nn
import torch.amp.autocast_mode
import torchvision.transforms.functional as TVF
from vision_qna import *
# https://huggingface.co/spaces/fancyfeast/joy-caption-alpha-two
# fancyfeast/joy-caption-alpha-two
LATEST="cgrkzexw-599808/"
LATEST_NAME="JoyCaption Alpha Two (2024-09-26a)"
CLIP_PATH = "google/siglip-so400m-patch14-384"
# This is the expected conversation format, but others work too.
SYSTEM_MSG="You are a helpful image captioner."
CAPTION_TYPE_MAP = {
"Descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"Descriptive (Informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"Training Prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"MidJourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"Booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"Booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"Art Critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"Product Listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"Social Media Post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
extra_options=[
"If there is a person/character in the image you must refer to them as {name}.",
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
"Include information about lighting.",
"Include information about camera angle.",
"Include information about whether there is a watermark or not.",
"Include information about whether there are JPEG artifacts or not.",
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
"Do NOT include anything sexual; keep it PG.",
"Do NOT mention the image's resolution.",
"You MUST include information about the subjective aesthetic quality of the image from low to very high.",
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
"Do NOT mention any text that is in the image.",
"Specify the depth of field and whether the background is in focus or blurred.",
"If applicable, mention the likely use of artificial or natural lighting sources.",
"Do NOT use any ambiguous language.",
"Include whether the image is sfw, suggestive, or nsfw.",
"ONLY describe the most important elements of the image."
]
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
class VisionQnA(VisionQnABase):
model_name: str = "joy-caption-alpha-two"
format: str = "llama3"
visual_layers: List[str] = []
def __init__(self, model_id: str, device: str, device_map: str = 'auto', extra_params = {}, format = None):
super().__init__(model_id, device, device_map, extra_params, format)
self.clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
self.clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
CHECKPOINT_PATH = Path(snapshot_download(repo_id="fancyfeast/joy-caption-alpha-two", repo_type="space", allow_patterns=LATEST)) / LATEST
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=True)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
self.clip_model.load_state_dict(checkpoint)
del checkpoint
self.clip_model.eval()
self.clip_model.requires_grad_(False)
self.clip_model.to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
del self.params['pretrained_model_name_or_path']
self.model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", **self.params)
self.model.eval()
self.image_adapter = ImageAdapter(self.clip_model.config.hidden_size, self.model.config.hidden_size, False, False, 38, False)
self.image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
self.image_adapter.eval()
self.image_adapter.to(self.device)
self.loaded_banner()
async def stream_chat_with_images(self, request: ImageChatRequest) -> AsyncGenerator[str, None]:
if request.messages[0].role != 'system':
request.messages = [Message(role='system', content=[Content(type='text', text=SYSTEM_MSG)])] + request.messages
images, prompt = await prompt_from_messages(request.messages, self.format)
def to_pixel_values(img):
image = img.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
return pixel_values.to(self.device)
def to_image_embed(img):
pixel_values = to_pixel_values(img)
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = self.clip_model(pixel_values=pixel_values, output_hidden_states=True)
embedded_images = self.image_adapter(vision_outputs.hidden_states)
return embedded_images.to(device=self.device, dtype=self.model.dtype)
if images:
image_embeds = [ to_image_embed(img) for img in images ]
else:
image_embeds = [ await url_to_image(black_pixel_url) ]
split_tokens = [ self.tokenizer.encode(c, return_tensors="pt", add_special_tokens=False, truncation=False) for c in prompt.split('<image>') ]
split_embeds = [ self.model.model.embed_tokens(tok_ids.to(self.device)) for tok_ids in split_tokens ]
input_ids = [split_tokens[0]]
inputs_embeds = [ split_embeds[0] ]
for im, tok, emb in zip(image_embeds, split_tokens[1:], split_embeds[1:]):
input_ids.extend([torch.zeros((1, im.shape[1]), dtype=torch.long), tok])
inputs_embeds.extend([ im, emb ])
input_ids = torch.cat(input_ids, dim=1).to(self.device)
attention_mask = torch.ones_like(input_ids).to(self.device)
inputs_embeds = torch.cat(inputs_embeds, dim=1).to(self.device)
inputs = dict(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
)
default_params = dict(
max_new_tokens=512,
do_sample=True,
suppress_tokens=None,
)
params = self.get_generation_params(request, default_params=default_params)
generation_kwargs = dict(
**inputs,
**params,
)
for new_text in threaded_streaming_generator(generate=self.model.generate, tokenizer=self.tokenizer, generation_kwargs=generation_kwargs):
end = new_text.find(self.tokenizer.eos_token)
if end == -1:
yield new_text
else:
yield new_text[:end]
break