-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLocalSimplification.cs
97 lines (86 loc) · 3.53 KB
/
LocalSimplification.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
using MNCD.Core;
using MNCD.Extensions;
using System;
using System.Collections.Generic;
using System.Linq;
namespace MNCD.Flattening
{
/// <summary>
/// Class that implements local simplification flattening method.
///
/// 6.1.2 Local Simplification - Page 103
/// Multilayer Social Networks
/// Mark E. Dickison, Matteo Magnani and Luca Rossi.
/// </summary>
public class LocalSimplification
{
/// <summary>
/// Flattens multi-layer network based on local simplification method.
/// </summary>
/// <param name="network">Multi-layer network.</param>
/// <param name="layerRelevances">Relevances of individual layers.</param>
/// <param name="threshold">Treshold of relevance to be included.</param>
/// <param name="weightEdges">Include edge weights.</param>
/// <returns>Flattened network.</returns>
public Network BasedOnLayerRelevance(Network network, double[] layerRelevances, double threshold, bool weightEdges = false)
{
var layerToIndex = network.GetLayerToIndex();
var edgesDict = new Dictionary<(Actor from, Actor to), double>();
if (network.Layers.Count != layerRelevances.Length)
{
throw new ArgumentException("Relevances count doesn't match the layers count.");
}
var flattenedNetwork = new Network(new Layer { Name = "Flattened" }, network.Actors);
foreach (var layer in network.Layers)
{
var idx = layerToIndex[layer];
var relevance = layerRelevances[idx];
if (relevance >= threshold)
{
foreach (var edge in layer.Edges)
{
var weight = edge.Weight * (weightEdges ? relevance : 1.0);
if (edgesDict.ContainsKey((edge.From, edge.To)))
{
edgesDict[(edge.From, edge.To)] += weight;
}
else if (edgesDict.ContainsKey((edge.To, edge.From)))
{
edgesDict[(edge.To, edge.From)] += weight;
}
else
{
edgesDict[(edge.From, edge.To)] = weight;
}
}
}
}
foreach (var edge in network.InterLayerEdges)
{
var lf = layerToIndex[edge.LayerFrom];
var lt = layerToIndex[edge.LayerTo];
var relevance = (layerRelevances[lf] + layerRelevances[lt]) / 2.0;
if (relevance >= threshold)
{
var weight = edge.Weight * (weightEdges ? relevance : 1.0);
if (edgesDict.ContainsKey((edge.From, edge.To)))
{
edgesDict[(edge.From, edge.To)] += weight;
}
else if (edgesDict.ContainsKey((edge.To, edge.From)))
{
edgesDict[(edge.To, edge.From)] += weight;
}
else
{
edgesDict[(edge.From, edge.To)] = weight;
}
}
}
flattenedNetwork.FirstLayer.Edges = edgesDict
.Select(e => new Edge(e.Key.from, e.Key.to, e.Value))
.ToList();
return flattenedNetwork;
}
}
}