-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathsequences.v
1208 lines (1072 loc) · 51.7 KB
/
sequences.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype choice seq.
From mathcomp Require Import bigop div ssralg ssrint ssrnum fintype order.
From mathcomp Require Import binomial matrix interval rat.
Require Import boolp reals ereal.
Require Import classical_sets posnum topology normedtype landau derive forms.
(******************************************************************************)
(* Definitions and lemmas about sequences *)
(* *)
(* The purpose of this file is to gather generic definitions and lemmas about *)
(* sequences. Since it is an early version, it is likely to undergo changes. *)
(* Here follow sample definitions and lemmas to give an idea of contents. *)
(* See file sequences_applications.v for small scale usage examples. *)
(* *)
(* Definitions: *)
(* R ^nat == notation for sequences, *)
(* i.e., functions of type nat -> R *)
(* harmonic == harmonic sequence *)
(* arithmetic == arithmetic sequence *)
(* geometric == geometric sequence *)
(* series u_ == the sequence of partial sums of u_ *)
(* [sequence u_n]_n == the sequence of general element u_n *)
(* [series u_n]_n == the series of general element u_n *)
(* [normed S] == transforms a series S = [series u_n]_n in its *)
(* normed series [series `|u_n|]_n] *)
(* (useful to represent absolute and normed convergence: *)
(* cvg [norm S_n]) *)
(* *)
(* Lemmas: *)
(* squeeze == squeeze lemma *)
(* cvgNpinfty u_ == (- u_ --> +oo) = (u_ --> -oo). *)
(* nonincreasing_cvg_ge u_ == if u_ is nonincreasing and convergent then *)
(* forall n, lim u_ <= u_ n *)
(* nondecreasing_cvg_le u_ == if u_ is nondecreasing and convergent then *)
(* forall n, lim u_ >= u_ n *)
(* nondecreasing_cvg u_ == if u_ is nondecreasing and bounded then u_ *)
(* is convergent and its limit is sup u_n *)
(* nonincreasing_cvg u_ == if u_ is nonincreasing u_ and bound by below *)
(* then u_ is convergent *)
(* adjacent == adjacent sequences lemma *)
(* cesaro == Cesaro's lemma *)
(* Sections sequences_R_* contain properties of sequences of real numbers *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import nonforgetful_inheritance.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Reserved Notation "R ^nat" (at level 0).
Reserved Notation "a `^ x" (at level 11).
Reserved Notation "[ 'sequence' E ]_ n"
(at level 0, E at level 200, n ident, format "[ 'sequence' E ]_ n").
Reserved Notation "[ 'series' E ]_ n"
(at level 0, E at level 0, n ident, format "[ 'series' E ]_ n").
Reserved Notation "[ 'normed' E ]" (at level 0, format "[ 'normed' E ]").
Definition sequence R := nat -> R.
Definition mk_sequence R f : sequence R := f.
Arguments mk_sequence R f /.
Notation "[ 'sequence' E ]_ n" := (mk_sequence (fun n => E)) : ring_scope.
Notation "R ^nat" := (sequence R) : type_scope.
Notation "'nondecreasing_seq' f" := ({homo f : n m / (n <= m)%nat >-> (n <= m)%O})
(at level 10).
Notation "'nonincreasing_seq' f" := ({homo f : n m / (n <= m)%nat >-> (n >= m)%O})
(at level 10).
Notation "'increasing_seq' f" := ({mono f : n m / (n <= m)%nat >-> (n <= m)%O})
(at level 10).
Notation "'decreasing_seq' f" := ({mono f : n m / (n <= m)%nat >-> (n >= m)%O})
(at level 10).
(* TODO: the "strict" versions with mono instead of homo should also have notations*)
Lemma nondecreasing_opp (T : numDomainType) (u_ : T ^nat) :
nondecreasing_seq (- u_) = nonincreasing_seq u_.
Proof. by rewrite propeqE; split => du x y /du; rewrite ler_opp2. Qed.
Lemma nonincreasing_opp (T : numDomainType) (u_ : T ^nat) :
nonincreasing_seq (- u_) = nondecreasing_seq u_.
Proof. by rewrite propeqE; split => du x y /du; rewrite ler_opp2. Qed.
Lemma decreasing_opp (T : numDomainType) (u_ : T ^nat) :
decreasing_seq (- u_) = increasing_seq u_.
Proof. by rewrite propeqE; split => du x y; rewrite -du ler_opp2. Qed.
Lemma increasing_opp (T : numDomainType) (u_ : T ^nat) :
increasing_seq (- u_) = decreasing_seq u_.
Proof. by rewrite propeqE; split => du x y; rewrite -du ler_opp2. Qed.
Lemma nondecreasing_seqP (T : numDomainType) (u_ : T ^nat) :
(forall n, u_ n <= u_ n.+1) -> nondecreasing_seq u_.
Proof. exact: homo_leq le_trans. Qed.
Lemma nonincreasing_seqP (T : numDomainType) (u_ : T ^nat) :
(forall n, u_ n >= u_ n.+1) -> nonincreasing_seq u_.
Proof. by apply: homo_leq (fun _ _ _ u v => le_trans v u). Qed.
Lemma increasing_seqP (T : numDomainType) (u_ : T ^nat) :
(forall n, u_ n < u_ n.+1) -> increasing_seq u_.
Proof. by move=> u_nondec; apply: le_mono; apply: homo_ltn lt_trans _. Qed.
Lemma decreasing_seqP (T : numDomainType) (u_ : T ^nat) :
(forall n, u_ n > u_ n.+1) -> decreasing_seq u_.
Proof.
move=> u_noninc;
(* FIXME: add shortcut to order.v *)
apply: (@total_homo_mono _ _ _ leq ltn ger gtr leqnn lexx
ltn_neqAle _ (fun _ _ _ => esym (le_anti _)) leq_total
(homo_ltn (fun _ _ _ u v => lt_trans v u) _)) => //.
by move=> x y; rewrite /= lt_neqAle eq_sym.
Qed.
(* TODO (maybe): variants for near \oo ?? *)
Local Notation eqolimn := (@eqolim _ _ _ eventually_filter).
Local Notation eqolimPn := (@eqolimP _ _ _ eventually_filter).
Section sequences_patched.
(* TODO: generalizations to numDomainType *)
Section NatShift.
Variables (N : nat) (V : topologicalType).
Implicit Types (f : nat -> V) (u : V ^nat) (l : V).
Lemma cvg_restrict f u_ l :
([sequence if (n <= N)%N then f n else u_ n]_n @ \oo --> l) =
(u_ @ \oo --> l).
Proof.
rewrite propeqE; split; apply: cvg_trans; apply: near_eq_cvg;
by near=> n => /=; case: ifP => //; rewrite ltn_geF//; near: n.
Grab Existential Variables. all: end_near. Qed.
Lemma is_cvg_restrict f u_ :
cvg ([sequence if (n <= N)%nat then f n else u_ n]_n @ \oo) =
cvg (u_ @ \oo).
Proof.
by rewrite propeqE; split;
[rewrite cvg_restrict|rewrite -(cvg_restrict f)] => /cvgP.
Qed.
Lemma cvg_centern u_ l : ([sequence u_ (n - N)%N]_n --> l) = (u_ --> l).
Proof.
rewrite propeqE; split; last by apply: cvg_comp; apply: cvg_subnr.
gen have cD : u_ l / u_ --> l -> (fun n => u_ (n + N)%N) --> l.
by apply: cvg_comp; apply: cvg_addnr.
by move=> /cD /=; under [X in X --> l]funext => n do rewrite addnK.
Qed.
Lemma cvg_shiftn u_ l : ([sequence u_ (n + N)%N]_n --> l) = (u_ --> l).
Proof.
rewrite propeqE; split; last by apply: cvg_comp; apply: cvg_addnr.
rewrite -[X in X -> _]cvg_centern; apply: cvg_trans => /=.
by apply: near_eq_cvg; near=> n; rewrite subnK//; near: n; exists N.
Grab Existential Variables. all: end_near. Qed.
End NatShift.
Variables (V : topologicalType).
Lemma cvg_shiftS u_ (l : V) : ([sequence u_ n.+1]_n --> l) = (u_ --> l).
Proof.
suff -> : [sequence u_ n.+1]_n = [sequence u_(n + 1)%N]_n by rewrite cvg_shiftn.
by rewrite funeqE => n/=; rewrite addn1.
Qed.
End sequences_patched.
Section sequences_R_lemmas_realFieldType.
Variable R : realFieldType.
Lemma squeeze T (f g h : T -> R) (a : filter_on T) :
(\forall x \near a, f x <= g x <= h x) -> forall (l : R),
f @ a --> l -> h @ a --> l -> g @ a --> l.
Proof.
move=> fgh l /cvg_distP lfa /cvg_distP lga; apply/cvg_distP => _/posnumP[e].
rewrite near_map; apply: filterS3 fgh (lfa _ e) (lga _ e) => /= x /andP[fg gh].
rewrite ![`|l - _|]distrC; rewrite !ltr_distl => /andP[lf _] /andP[_ hl].
by rewrite (lt_le_trans lf)? (le_lt_trans gh).
Qed.
Lemma cvgPpinfty (u_ : R ^nat) :
u_ --> +oo <-> forall A, A > 0 -> \forall n \near \oo, A <= u_ n.
Proof.
split => [u_cvg _/posnumP[A]|u_ge X [A [Ar AX]]].
rewrite -(near_map u_ \oo (<=%R A%:num)).
by apply: u_cvg; apply: nbhs_pinfty_ge.
rewrite !near_simpl [\near u_, X _](near_map u_ \oo); near=> x.
apply: AX; rewrite (@lt_le_trans _ _ ((maxr 0 A) +1)) //.
by rewrite ltr_spaddr // le_maxr lexx orbT.
by near: x; apply: u_ge; rewrite ltr_spaddr // le_maxr lexx.
Grab Existential Variables. all: end_near. Qed.
Lemma cvgNpinfty (u_ : R ^nat) : (- u_ --> +oo) = (u_ --> -oo).
Proof.
rewrite propeqE; split => u_cvg P [/= l [l_real Pl]];
rewrite !near_simpl [\forall x \near _, P _](near_map _ \oo);
have [|/=n _]:= u_cvg (fun x => P (- x)); do ?by [exists n
| exists (- l); split; rewrite ?rpredN// => x;
rewrite (ltr_oppl, ltr_oppr); apply: Pl].
by under [X in _ `<=` X]funext do rewrite /= opprK; exists n.
Qed.
Lemma cvgNminfty (u_ : R ^nat) : (- u_ --> -oo) = (u_ --> +oo).
Proof. by rewrite -cvgNpinfty opprK. Qed.
Lemma cvgPminfty (u_ : R ^nat) :
u_ --> -oo <-> forall A, A > 0 -> \forall n \near \oo, - A >= u_ n.
Proof.
rewrite -cvgNpinfty; rewrite cvgPpinfty.
by split => uA A A_gt0; near=> n; rewrite ler_oppr; near: n; apply: uA.
Grab Existential Variables. all: end_near. Qed.
Lemma ger_cvg_pinfty (u_ v_ : R ^nat) : (\forall n \near \oo, u_ n <= v_ n) ->
u_ --> +oo -> v_ --> +oo.
Proof.
move=> uv /cvgPpinfty ucvg; apply/cvgPpinfty => _/posnumP[A].
by apply: filterS2 (ucvg _ A) uv => x; apply: le_trans.
Qed.
Lemma ler_cvg_minfty (v_ u_ : R ^nat) : (\forall n \near \oo, u_ n <= v_ n) ->
v_ --> -oo -> u_ --> -oo.
Proof.
move=> uv /cvgPminfty ucvg; apply/cvgPminfty => _/posnumP[A].
by apply: filterS2 uv (ucvg _ A) => x; apply: le_trans.
Qed.
(* TODO: rewrite closed_cvg_loc with the right implicits to do elim *)
(* and using `\forall x \near F, D (f x)` instead of F ... *)
(* it should be renamed closed_cvg and replace closed_seq below *)
Lemma closed_seq {V : topologicalType} (u_ : V ^nat) (A : V -> Prop) :
(* BUG: elim does not see this as an elimination principle if A : set V *)
closed A -> (\forall n \near \oo, A (u_ n)) ->
forall l, u_ --> l -> A l.
Proof. by move=> A_closed u_A l /closed_cvg_loc; apply. Qed.
Arguments closed_seq {V}.
Lemma lim_ge x (u_ : R ^nat) : cvg u_ ->
(\forall n \near \oo, x <= u_ n) -> x <= lim u_.
Proof. by move=> /closed_cvg_loc V ?; elim/V: _. Qed.
Lemma lim_le x (u_ : R ^nat) : cvg u_ ->
(\forall n \near \oo, x >= u_ n) -> x >= lim u_.
Proof. by move=> /closed_cvg_loc V ?; elim/V: _. Qed.
Lemma ler_lim (u_ v_ : R ^nat) : cvg u_ -> cvg v_ ->
(\forall n \near \oo, u_ n <= v_ n) -> lim u_ <= lim v_.
Proof.
move=> uv cu cv; rewrite -subr_ge0 -limB //.
apply: lim_ge; first exact: is_cvgB.
by apply: filterS cv => n; rewrite subr_ge0.
Qed.
Lemma nonincreasing_cvg_ge (u_ : R ^nat) : nonincreasing_seq u_ -> cvg u_ ->
forall n, lim u_ <= u_ n.
Proof.
move=> du ul p; rewrite leNgt; apply/negP => up0.
move/cvg_distP : ul => /(_ `|u_ p - lim u_|%R).
rewrite {1}ltr0_norm ?subr_lt0 // opprB subr_gt0 => /(_ up0).
rewrite near_map => ul.
near \oo => N.
have /du uNp : (p <= N)%nat by near: N; rewrite nearE; exists p.
have : `|lim u_ - u_ N| >= `|u_ p - lim u_|%R.
rewrite ltr0_norm // ?subr_lt0 // opprB distrC.
rewrite (@le_trans _ _ (lim u_ - u_ N)) // ?ler_sub //.
rewrite (_ : `| _ | = `|u_ N - lim u_|%R) // ler0_norm // ?opprB //.
by rewrite subr_le0 (le_trans _ (ltW up0)).
rewrite leNgt => /negP; apply; by near: N.
Grab Existential Variables. all: end_near. Qed.
Lemma nondecreasing_cvg_le (u_ : R ^nat) : nondecreasing_seq u_ -> cvg u_ ->
forall n, u_ n <= lim u_.
Proof.
move=> iu cu n; move: (@nonincreasing_cvg_ge (- u_)).
rewrite -nondecreasing_opp opprK => /(_ iu); rewrite is_cvgNE => /(_ cu n).
by rewrite limN // ler_oppl opprK.
Qed.
End sequences_R_lemmas_realFieldType.
Section partial_sum.
Variables (V : zmodType) (u_ : V ^nat).
Definition series : V ^nat := [sequence \sum_(k < n) u_ k]_n.
Definition telescope : V ^nat := [sequence u_ n.+1 - u_ n]_n.
Lemma seriesSr n : series n.+1 = series n + u_ n.
Proof. by rewrite /series/= big_ord_recr/=. Qed.
Lemma seriesS n : series n.+1 = u_ n + series n.
Proof. by rewrite addrC seriesSr. Qed.
Lemma seriesSB (n : nat) : series n.+1 - series n = u_ n.
Proof. by rewrite seriesS addrK. Qed.
Lemma seriesEord : series = [sequence \sum_(k < n) u_ k]_n.
Proof. by []. Qed.
Lemma seriesEnat : series = [sequence \sum_(0 <= k < n) u_ k]_n.
Proof. by rewrite funeqE => n /=; rewrite big_mkord. Qed.
Lemma series_addn m n : series (n + m)%N = series m + \sum_(m <= k < n + m) u_ k.
Proof. by rewrite seriesEnat/= -big_cat_nat// leq_addl. Qed.
Lemma sub_series_geq m n : (m <= n)%N ->
series n - series m = \sum_(m <= k < n) u_ k.
Proof. by move=> /subnK<-; rewrite series_addn addrAC subrr add0r. Qed.
Lemma sub_series m n :
series n - series m = if (m <= n)%N then \sum_(m <= k < n) u_ k
else - \sum_(n <= k < m) u_ k.
Proof. by have [mn|/ltnW mn] := leqP m n; rewrite -sub_series_geq// opprB. Qed.
Lemma sub_double_series n : series n.*2 - series n = \sum_(n <= k < n.*2) u_ k.
Proof. by rewrite sub_series_geq// -addnn leq_addl. Qed.
End partial_sum.
Arguments series {V} u_ n : simpl never.
Arguments telescope {V} u_ n : simpl never.
Notation "[ 'series' E ]_ n" := (series [sequence E]_n) : ring_scope.
Lemma telescopeK (V : zmodType) (u_ : V ^nat) :
series (telescope u_) = [sequence u_ n - u_ 0%N]_n.
Proof. by rewrite funeqE => n; rewrite seriesEnat/= telescope_sumr. Qed.
Lemma seriesK (V : zmodType) : cancel (@series V) telescope.
Proof. move=> ?; exact/funext/seriesSB. Qed.
Lemma eq_sum_telescope (V : zmodType) (u_ : V ^nat) n :
u_ n = u_ 0%N + series (telescope u_) n.
Proof. by rewrite telescopeK/= addrC addrNK. Qed.
(* TODO: port to mathcomp *)
(* missing mathcomp lemmas *)
Lemma ler_sum_nat (R : numDomainType) (m n : nat) (F G : nat -> R) :
(forall i, (m <= i < n)%N -> (F i <= G i)%O) ->
(\sum_(m <= i < n) F i <= \sum_(m <= i < n) G i)%O.
Proof.
move=> leFG; rewrite big_nat_cond [in X in _ <= X]big_nat_cond.
by rewrite ler_sum// => i; rewrite andbT => /leFG.
Qed.
Lemma sumr_const_nat (V : zmodType) (m n : nat) (x : V) :
\sum_(n <= i < m) x = x *+ (m - n).
Proof. by rewrite big_const_nat; elim: (m - n)%N => //= k ->; rewrite mulrS. Qed.
(* end missing mathcomp lemmas *)
Section series_patched.
Variables (N : nat) (K : numFieldType) (V : normedModType K).
Implicit Types (f : nat -> V) (u : V ^nat) (l : V).
Lemma is_cvg_series_restrict u_ :
cvg [sequence \sum_(N <= k < n) u_ k]_n = cvg (series u_).
Proof.
suff -> : (fun n => \sum_(N <= k < n) u_ k) =
fun n => if (n <= N)%N then \sum_(N <= k < n) u_ k
else series u_ n - \sum_(0 <= k < N) u_ k.
by rewrite is_cvg_restrict/= is_cvgDlE//; apply: is_cvg_cst.
rewrite funeqE => n; case: leqP => // ltNn; apply: (canRL (addrK _)).
by rewrite seriesEnat addrC -big_cat_nat// ltnW.
Qed.
End series_patched.
Section sequences_R_lemmas.
Variable R : realType.
Lemma cvg_has_ub (u_ : R ^nat) :
cvg u_ -> has_ubound [set `|u_ n| | n in setT].
Proof.
move=> /cvg_seq_bounded/pinfty_ex_gt0[M M_gt0 /= uM].
by exists M; apply/ubP => x -[n _ <-{x}]; exact: uM.
Qed.
(* TODO: move *)
Lemma has_ub_image_norm (S : set R) : has_ubound (normr @` S) -> has_ubound S.
Proof.
case => M /ubP uM; exists `|M|; apply/ubP => r rS.
rewrite (le_trans (real_ler_norm _)) ?num_real //.
rewrite (le_trans (uM _ _)) ?real_ler_norm ?num_real //.
by exists r.
Qed.
Lemma cvg_has_sup (u_ : R ^nat) : cvg u_ -> has_sup (u_ @` setT).
Proof.
move/cvg_has_ub; rewrite -/(_ @` _) -(image_comp u_ normr setT).
move=> /has_ub_image_norm uM; split => //.
by exists (u_ 0%N), 0%N.
Qed.
Lemma cvg_has_inf (u_ : R ^nat) : cvg u_ -> has_inf (u_ @` setT).
Proof.
move/is_cvgN/cvg_has_sup; rewrite has_inf_supN.
suff -> : (- u_) @` setT = -%R @` (u_ @` setT) by [].
rewrite predeqE => x; split.
by case=> n _ <-; exists (u_ n) => //; exists n.
by case=> y [] n _ <- <-; exists n.
Qed.
Lemma nondecreasing_cvg (u_ : R ^nat) (M : R) :
nondecreasing_seq u_ -> (forall n, u_ n <= M) ->
u_ --> sup (u_ @` setT) .
Proof.
move=> u_nd u_M; set S := _ @` _; set M0 := sup S.
have supS : has_sup S.
split; first by exists (u_ 0%N), 0%N.
by exists M; apply/ubP => x -[n _ <-{x}].
apply: cvg_distW => _/posnumP[e]; rewrite near_map.
have [p /andP[M0u_p u_pM0]] : exists p, M0 - e%:num <= u_ p <= M0.
have [x] := sup_adherent supS (posnum_gt0 e).
move=> -[p _] <-{x} => /ltW M0u_p.
exists p; rewrite M0u_p /=; have /ubP := sup_upper_bound supS.
by apply; exists p.
near=> n; have pn : (p <= n)%N by near: n; apply: nbhs_infty_ge.
rewrite distrC ler_norml ler_sub_addl (le_trans M0u_p (u_nd _ _ pn)) /=.
rewrite ler_subl_addr (@le_trans _ _ M0) ?ler_addr //.
by have /ubP := sup_upper_bound supS; apply; exists n.
Grab Existential Variables. all: end_near. Qed.
Lemma nondecreasing_is_cvg (u_ : R ^nat) (M : R) :
nondecreasing_seq u_ -> (forall n, u_ n <= M) -> cvg u_.
Proof. by move=> u_incr u_bnd; apply: cvgP; apply: nondecreasing_cvg. Qed.
Lemma near_nondecreasing_is_cvg (u_ : R ^nat) (M : R) :
{near \oo, nondecreasing_seq u_} ->
(\forall n \near \oo, u_ n <= M) ->
cvg u_.
Proof.
move=> [k _ u_nd] [k' _ u_M]; suff : cvg [sequence u_ (n + maxn k k')%N]_n.
by case/cvg_ex => /= l; rewrite cvg_shiftn => ul; apply/cvg_ex; exists l.
apply (@nondecreasing_is_cvg _ M) => [/= ? ? ? | ?].
by rewrite u_nd ?leq_add2r//= (leq_trans (leq_maxl _ _) (leq_addl _ _)).
by rewrite u_M //= (leq_trans (leq_maxr _ _) (leq_addl _ _)).
Qed.
Lemma nonincreasing_cvg (u_ : R ^nat) (m : R) :
nonincreasing_seq u_ -> (forall n, m <= u_ n) ->
u_ --> inf (u_ @` setT).
Proof.
rewrite -nondecreasing_opp => /(@nondecreasing_cvg _ (- m)) u_sup mu_.
rewrite -[X in X --> _]opprK /inf image_comp.
by apply: cvgN; apply u_sup => p; rewrite ler_oppl opprK.
Qed.
Lemma nonincreasing_is_cvg (u_ : R ^nat) (m : R) :
nonincreasing_seq u_ -> (forall n, m <= u_ n) -> cvg u_.
Proof. by move=> u_decr u_bnd; apply: cvgP; apply: nonincreasing_cvg. Qed.
Lemma near_nonincreasing_is_cvg (u_ : R ^nat) (m : R) :
{near \oo, nonincreasing_seq u_} ->
(\forall n \near \oo, m <= u_ n) ->
cvg u_.
Proof.
move=> u_ni u_m.
rewrite -(opprK u_); apply: is_cvgN; apply/(@near_nondecreasing_is_cvg _ (- m)).
by apply: filterS u_ni => x u_x y xy; rewrite ler_oppl opprK u_x.
by apply: filterS u_m => x u_x; rewrite ler_oppl opprK.
Qed.
Lemma adjacent (u_ v_ : R ^nat) : nondecreasing_seq u_ -> nonincreasing_seq v_ ->
(v_ - u_) --> (0 : R) -> [/\ lim v_ = lim u_, cvg u_ & cvg v_].
Proof.
set w_ := v_ - u_ => iu dv w0.
have vu n : v_ n >= u_ n.
suff : lim w_ <= w_ n by rewrite (cvg_lim _ w0)// subr_ge0.
apply: nonincreasing_cvg_ge; last apply: cvgP w0.
by move=> m p mp; rewrite ler_sub; rewrite ?iu ?dv.
have cu : cvg u_.
suff: forall n, u_ n <= v_ O by apply: nondecreasing_is_cvg.
by move=> n; rewrite (le_trans (vu _)) //; apply/dv.
have cv : cvg v_.
suff: forall n, u_ O <= v_ n by apply: nonincreasing_is_cvg.
by move=> n; rewrite (le_trans _ (vu _)) //; exact: iu.
by split=> //; apply/eqP; rewrite -subr_eq0 -limB //; exact/eqP/cvg_lim.
Qed.
End sequences_R_lemmas.
Definition harmonic {R : fieldType} : R ^nat := [sequence n.+1%:R^-1]_n.
Arguments harmonic {R} n /.
Lemma harmonic_gt0 {R : numFieldType} i : 0 < harmonic i :> R.
Proof. by rewrite /= invr_gt0 ltr0n. Qed.
Lemma harmonic_ge0 {R : numFieldType} i : 0 <= harmonic i :> R.
Proof. exact/ltW/harmonic_gt0. Qed.
Lemma cvg_harmonic {R : archiFieldType} : harmonic --> (0 : R).
Proof.
apply: cvg_distW => _/posnumP[e]; rewrite near_map; near=> i.
rewrite distrC subr0 ger0_norm//= -lef_pinv ?qualifE// invrK.
rewrite (le_trans (ltW (archi_boundP _)))// ler_nat -add1n -leq_subLR.
by near: i; apply: nbhs_infty_ge.
Grab Existential Variables. all: end_near. Qed.
(* TODO: is there an equivalent in mathcomp? *)
Lemma iter_addr (V : zmodType) n (r : V) p : iter n (+%R r) p = r *+ n + p.
Proof.
elim: n => /= [|n ih]; by [rewrite mulr0n add0r|rewrite ih mulrS addrA].
Qed.
Definition arithmetic_mean (R : numDomainType) (u_ : R ^nat) : R ^nat :=
[sequence n.+1%:R^-1 * (series u_ n.+1)]_n.
Definition harmonic_mean (R : numDomainType) (u_ : R ^nat) : R ^nat :=
let v := [sequence (u_ n)^-1]_n in
[sequence (n.+1%:R / series v n.+1)]_n.
Definition root_mean_square (R : realType) (u_ : R ^nat) : R ^nat :=
let v_ := [sequence (u_ k)^+2]_k in
[sequence Num.sqrt (n.+1%:R^-1 * series v_ n.+1)]_n.
Section cesaro.
Variable R : archiFieldType.
Theorem cesaro (u_ : R ^nat) (l : R) : u_ --> l -> arithmetic_mean u_ --> l.
Proof.
move=> u0_cvg; have ssplit v_ m n : (m <= n)%N -> `|n%:R^-1 * series v_ n| <=
n%:R^-1 * `|series v_ m| + n%:R^-1 * `|\sum_(m <= i < n) v_ i|.
move=> /subnK<-; rewrite series_addn mulrDr (le_trans (ler_norm_add _ _))//.
by rewrite !normrM ger0_norm ?invr_ge0 ?ler0n.
apply/cvg_distP=> _/posnumP[e]; rewrite near_simpl; near \oo => m; near=> n.
have {}/ssplit -/(_ _ [sequence l - u_ n]_n) : (m.+1 <= n.+1)%nat by near: n; exists m.
rewrite /series /= big_split/= sumrN mulrBr sumr_const card_ord -(mulr_natl l) mulKf//.
move=> /le_lt_trans->//; rewrite [e%:num]splitr ltr_add//.
have [->|neq0] := eqVneq (\sum_(k < m.+1) (l - u_ k)) 0.
by rewrite normr0 mulr0.
rewrite -ltr_pdivl_mulr ?normr_gt0//.
rewrite -ltf_pinv ?qualifE// ?mulr_gt0 ?invr_gt0 ?normr_gt0// invrK.
rewrite (lt_le_trans (archi_boundP _))// ?(invr_ge0, mulr_ge0)// ler_nat leqW//.
by near: n; apply: nbhs_infty_ge.
rewrite ltr_pdivr_mull ?ltr0n // (le_lt_trans (ler_norm_sum _ _ _)) //.
rewrite (le_lt_trans (@ler_sum_nat _ _ _ _ (fun i => e%:num / 2) _))//; last first.
by rewrite sumr_const_nat mulr_natl ltr_pmuln2l// ltn_subrL.
move=> i /andP[mi _]; move: i mi; near: m.
have : \forall x \near \oo, `|l - u_ x| < e%:num / 2.
by move/cvg_distP : u0_cvg; apply; rewrite divr_gt0.
move=> -[N _ Nu]; exists N => // k Nk i ki.
by rewrite ltW// Nu//= (leq_trans Nk)// ltnW.
Grab Existential Variables. all: end_near. Qed.
End cesaro.
Section cesaro_converse.
Variable R : archiFieldType.
Let cesaro_converse_off_by_one (u_ : R ^nat) :
[sequence n.+1%:R^-1 * series u_ n.+1]_ n --> (0 : R) ->
[sequence n.+1%:R^-1 * series u_ n]_ n --> (0 : R).
Proof.
move=> H; apply/cvg_distP => _/posnumP[e]; rewrite near_map.
move/cvg_distP : H => /(_ e%:num (posnum_gt0 e)); rewrite near_map => -[m _ mu].
near=> n; rewrite sub0r normrN /=.
have /andP[n0] : ((0 < n) && (m <= n.-1))%N.
near: n; exists m.+1 => // k mk; rewrite (leq_trans _ mk) //=.
by rewrite -(leq_add2r 1%N) !addn1 prednK // (leq_trans _ mk).
move/mu => {mu}; rewrite sub0r normrN /= prednK //; apply: le_lt_trans.
rewrite !normrM ler_wpmul2r // ger0_norm // ger0_norm // ?invr_ge0 // ?ler0n //.
by rewrite lef_pinv // ?ler_nat // posrE // ltr0n.
Grab Existential Variables. all: end_near. Qed.
Lemma cesaro_converse (u_ : R ^nat) (l : R) :
telescope u_ =o_\oo harmonic -> arithmetic_mean u_ --> l -> u_ --> l.
Proof.
pose a_ := telescope u_ => a_o u_l.
suff abel : forall n,
u_ n - arithmetic_mean u_ n = \sum_(1 <= k < n.+1) k%:R / n.+1%:R * a_ k.-1.
suff K : u_ - arithmetic_mean u_ --> (0 : R).
rewrite -(add0r l).
rewrite (_ : u_ = u_ - arithmetic_mean u_ + arithmetic_mean u_); last first.
by rewrite funeqE => n; rewrite subrK.
exact: cvgD.
rewrite (_ : _ - arithmetic_mean u_ =
(fun n => \sum_(1 <= k < n.+1) k%:R / n.+1%:R * a_ k.-1)); last first.
by rewrite funeqE.
rewrite {abel} /= (_ : (fun _ => _) =
fun n => n.+1%:R^-1 * \sum_(k < n) k.+1%:R * a_ k); last first.
rewrite funeqE => n; rewrite big_add1 /= big_mkord /= big_distrr /=.
by apply eq_bigr => i _; rewrite mulrCA mulrA.
have {}a_o : [sequence n.+1%:R * telescope u_ n]_n --> (0 : R).
apply: (@eqolim0 _ _ _ eventually_filterType).
rewrite a_o.
set h := 'o_[filter of \oo] harmonic.
apply/eqoP => _/posnumP[e] /=.
near=> n; rewrite normr1 mulr1 normrM -ler_pdivl_mull ?normr_gt0 //.
rewrite mulrC -normrV ?unitfE //.
near: n.
by case: (eqoP eventually_filterType harmonic h) => Hh _; apply Hh.
move: (cesaro a_o); rewrite /arithmetic_mean /series /= -/a_.
exact: (@cesaro_converse_off_by_one (fun k : nat => k.+1%:R * a_ k)).
case => [|n].
rewrite /arithmetic_mean /= invr1 mul1r /series /= big_ord_recl !big_ord0.
by rewrite addr0 subrr big_nil.
rewrite /arithmetic_mean /= /series /= big_ord_recl /=.
under eq_bigr do rewrite /bump /= add1n eq_sum_telescope.
rewrite big_split /= big_const card_ord iter_addr addr0 addrA -mulrS mulrDr.
rewrite -(mulr_natl (u_ O)) mulrA mulVr ?unitfE ?pnatr_eq0 // mul1r opprD addrA.
rewrite eq_sum_telescope (addrC (u_ O)) addrK.
rewrite [X in _ - _ * X](_ : _ =
\sum_(0 <= i < n.+1) \sum_(0 <= k < n.+1 | (k < i.+1)%N) a_ k); last first.
by rewrite big_mkord; apply eq_bigr => i _; rewrite big_mkord -big_ord_widen.
rewrite (exchange_big_dep_nat xpredT) //=.
rewrite [X in _ - _ * X](_ : _ =
\sum_(0 <= i < n.+1) \sum_(i <= j < n.+1) a_ i ); last first.
apply congr_big_nat => //= i ni.
rewrite big_const_nat iter_addr addr0 -big_filter.
rewrite big_const_seq iter_addr addr0; congr (_ *+ _).
rewrite /index_iota subn0 -[in LHS](subnKC (ltnW ni)) iota_add filter_cat.
rewrite count_cat (_ : [seq _ <- _ | _] = [::]); last first.
rewrite -(filter_pred0 (iota 0 i)); apply eq_in_filter => j.
by rewrite mem_iota leq0n andTb add0n => ji; rewrite ltnNge ji.
rewrite 2!add0n (_ : [seq _ <- _ | _] = iota i (n.+1 - i)); last first.
rewrite -[RHS]filter_predT; apply eq_in_filter => j.
rewrite mem_iota => /andP[ij]; rewrite subnKC; last exact/ltnW.
by move=> jn; rewrite ltnS ij.
by rewrite count_predT size_iota.
rewrite [X in _ - _ * X](_ : _ =
\sum_(0 <= i < n.+1) a_ i * (n.+1 - i)%:R); last first.
by apply eq_bigr => i _; rewrite big_const_nat iter_addr addr0 mulr_natr.
rewrite big_distrr /= big_mkord (big_morph _ (@opprD _) (@oppr0 _)).
rewrite -big_split /= big_add1 /= big_mkord; apply eq_bigr => i _.
rewrite mulrCA -[X in X - _]mulr1 -mulrBr [RHS]mulrC; congr (_ * _).
rewrite -[X in X - _](@divrr _ (n.+2)%:R) ?unitfE ?pnatr_eq0 //.
rewrite [in X in _ - X]mulrC -mulrBl; congr (_ / _).
rewrite -natrB; last by rewrite (@leq_trans n.+1) // leq_subr.
rewrite subnBA; by [rewrite addSnnS addnC addnK | rewrite ltnW].
Grab Existential Variables. all: end_near. Abort.
End cesaro_converse.
Section series_convergence.
Lemma cvg_series_cvg_0 (K : numFieldType) (V : normedModType K) (u_ : V ^nat) :
cvg (series u_) -> u_ --> (0 : V).
Proof.
move=> cvg_series.
rewrite (_ : u_ = fun n => series u_ (n + 1)%nat - series u_ n); last first.
by rewrite funeqE => i; rewrite addn1 seriesSB.
rewrite -(subrr (lim (series u_))).
by apply: cvgD; rewrite ?cvg_shiftn//; apply: cvgN.
Qed.
Lemma nondecreasing_series (R : numFieldType) (u_ : R ^nat) :
(forall n, 0 <= u_ n) -> nondecreasing_seq (series u_).
Proof.
move=> u_ge0; apply: nondecreasing_seqP => n.
by rewrite /series/= big_ord_recr ler_addl.
Qed.
Lemma increasing_series (R : numFieldType) (u_ : R ^nat) :
(forall n, 0 < u_ n) -> increasing_seq (series u_).
Proof.
move=> u_ge0; apply: increasing_seqP => n.
by rewrite /series/= big_ord_recr ltr_addl.
Qed.
End series_convergence.
Definition arithmetic (R : zmodType) a z : R ^nat := [sequence a + z *+ n]_n.
Arguments arithmetic {R} a z n /.
Lemma mulrn_arithmetic (R : zmodType) : @GRing.natmul R = arithmetic 0.
Proof. by rewrite funeq2E => z n /=; rewrite add0r. Qed.
Definition geometric (R : fieldType) a z : R ^nat := [sequence a * z ^+ n]_n.
Arguments geometric {R} a z n /.
Lemma exprn_geometric (R : fieldType) : (@GRing.exp R) = geometric 1.
Proof. by rewrite funeq2E => z n /=; rewrite mul1r. Qed.
Lemma cvg_arithmetic (R : archiFieldType) a (z : R) :
z > 0 -> arithmetic a z --> +oo.
Proof.
move=> z_gt0; apply/cvgPpinfty => _ /posnumP[A]; near=> n => /=.
rewrite -ler_subl_addl -mulr_natl -ler_pdivr_mulr//; set x := (X in X <= _).
rewrite ler_normlW// ltW// (lt_le_trans (archi_boundP _))// ler_nat.
by near: n; apply: nbhs_infty_ge.
Grab Existential Variables. all: end_near. Qed.
(* Cyril: I think the shortest proof would rely on cauchy completion *)
Lemma cvg_expr (R : archiFieldType) (z : R) :
`|z| < 1 -> (GRing.exp z : R ^nat) --> (0 : R).
Proof.
move=> Nz_lt1; apply: cvg_dist0; pose t := (1 - `|z|).
pose oo_filter := eventually_filterType. (* Cyril: fixme *)
apply: (@squeeze _ _ (cst 0) _ (t^-1 *: (@harmonic R)) oo_filter); last 2 first.
- exact: cvg_cst.
- by rewrite -(scaler0 _ t^-1); exact: (cvgZr cvg_harmonic).
near=> n; rewrite normr_ge0 normrX/= ler_pdivl_mull ?subr_gt0//.
rewrite -(@ler_pmul2l _ n.+1%:R)// mulfV// [t * _]mulrC mulr_natl.
have -> : 1 = (`|z| + t) ^+ n.+1 by rewrite addrC addrNK expr1n.
rewrite exprDn (bigD1 (inord 1)) ?inordK// subn1 expr1 bin1 ler_addl sumr_ge0//.
by move=> i; rewrite ?(mulrn_wge0, mulr_ge0, exprn_ge0, subr_ge0)// ltW.
Grab Existential Variables. all: end_near. Qed.
Lemma geometric_seriesE (R : numFieldType) (a z : R) : z != 1 ->
series (geometric a z) = [sequence a * (1 - z ^+ n) / (1 - z)]_n.
Proof.
rewrite funeqE => z_neq1 n.
apply: (@mulIf _ (1 - z)); rewrite ?mulfVK ?subr_eq0 1?eq_sym//.
rewrite seriesEnat !mulrBr [in LHS]mulr1 mulr_suml -opprB -sumrB.
by under eq_bigr do rewrite -mulrA -exprSr; rewrite telescope_sumr// opprB.
Qed.
Lemma cvg_geometric_series (R : archiFieldType) (a z : R) : `|z| < 1 ->
series (geometric a z) --> (a * (1 - z)^-1).
Proof.
move=> Nz_lt1; rewrite geometric_seriesE ?lt_eqF 1?ltr_normlW//.
have -> : a / (1 - z) = (a * (1 - 0)) / (1 - z) by rewrite subr0 mulr1.
by apply: cvgMl; apply: cvgMr; apply: cvgB; [apply: cvg_cst|apply: cvg_expr].
Qed.
Lemma cvg_geometric (R : archiFieldType) (a z : R) : `|z| < 1 ->
geometric a z --> (0 : R).
Proof. by move=> /cvg_geometric_series/cvgP/cvg_series_cvg_0. Qed.
Lemma is_cvg_geometric_series (R : archiFieldType) (a z : R) : `|z| < 1 ->
cvg (series (geometric a z)).
Proof. by move=> /cvg_geometric_series/cvgP; apply. Qed.
Definition normed_series_of (K : numDomainType) (V : normedModType K)
(u_ : V ^nat) of phantom V^nat (series u_) : K ^nat :=
[series `|u_ n|]_n.
Notation "[ 'normed' s_ ]" := (@normed_series_of _ _ _ (Phantom _ s_)) : ring_scope.
Arguments normed_series_of {K V} u_ _ n /.
Lemma ger0_normed {K : numFieldType} (u_ : K ^nat) :
(forall n, 0 <= u_ n) -> [normed series u_] = series u_.
Proof.
by move=> u_gt0; rewrite funeqE => n /=; apply: eq_bigr => k; rewrite ger0_norm.
Qed.
Lemma cauchy_seriesP {R : numFieldType} (V : normedModType R) (u_ : V ^nat) :
cauchy (series u_ @ \oo) <->
forall e : R, e > 0 ->
\forall n \near (\oo, \oo), `|\sum_(n.1 <= k < n.2) u_ k| < e.
Proof.
rewrite -cauchy_ballP; split=> su_cv _/posnumP[e]; have {}su_cv := su_cv _ e;
rewrite -near2_pair -ball_normE !near_simpl/= in su_cv *.
apply: filterS su_cv => -[/= m n]; rewrite distrC sub_series.
by have [|/ltnW]:= leqP m n => mn//; rewrite (big_geq mn) ?normr0.
have := su_cv; rewrite near_swap => su_cvC; near=> m => /=; rewrite sub_series.
by have [|/ltnW]:= leqP m.2 m.1 => m12; rewrite ?normrN; near: m.
Grab Existential Variables. all: end_near. Qed.
Lemma series_le_cvg (R : realType) (u_ v_ : R ^nat) :
(forall n, 0 <= u_ n) -> (forall n, 0 <= v_ n) ->
(forall n, u_ n <= v_ n) ->
cvg (series v_) -> cvg (series u_).
Proof.
move=> u_ge0 v_ge0 le_uv; have le_UV n : series u_ n <= series v_ n.
by apply ler_sum => *; exact: le_uv.
move=> /cvg_seq_bounded/pinfty_ex_gt0[/= M _ svM].
apply: (@nondecreasing_is_cvg _ _ M); first by apply: nondecreasing_series.
by move=> n; apply: le_trans (svM n _); rewrite // ger0_norm ?sumr_ge0.
Qed.
Lemma normed_cvg {R : realType} (V : completeNormedModType R) (u_ : V ^nat) :
cvg [normed series u_] -> cvg (series u_).
Proof.
move=> /cauchy_cvgP/cauchy_seriesP u_ncvg.
apply/cauchy_cvgP/cauchy_seriesP => e /u_ncvg.
apply: filterS => n /=; rewrite ger0_norm ?sumr_ge0//.
by apply: le_lt_trans; apply: ler_norm_sum.
Qed.
Section sequences_of_extended_real_numbers.
Lemma ereal_cvgN (R : realFieldType) (f : {ereal R} ^nat) (a : {ereal R}) :
f --> a -> (fun n => - (f n))%E --> (- a)%E.
Proof.
rewrite (_ : (fun n => - (f n))%E = -%E \o f) // => /cvg_comp; apply.
exact: oppe_continuous.
Qed.
Lemma ereal_cvg_ge0 (R : realFieldType) (f : {ereal R} ^nat) (a : {ereal R}) :
(forall n, 0%:E <= f n)%E -> f --> a -> (0%:E <= a)%E.
Proof.
move=> f0 /closed_cvg_loc V; elim/V : _; last exact: closed_ereal_le_ereal.
by exists O => // ? _; exact: f0.
Qed.
Lemma ereal_lim_ge (R : realFieldType) x (u_ : {ereal R} ^nat) : cvg u_ ->
(\forall n \near \oo, (x <= u_ n)%E) -> (x <= lim u_)%E.
Proof.
move=> /closed_cvg_loc V xu_; elim/V: _; last exact: closed_ereal_le_ereal.
case: xu_ => m _ xu_.
near \oo => n.
have mn : (n >= m)%N by near: n; exists m.
by exists n => // k nk /=; exact: (xu_ _ (leq_trans mn nk)).
Grab Existential Variables. all: end_near. Qed.
Lemma ereal_lim_le (R : realFieldType) x (u_ : {ereal R} ^nat) : cvg u_ ->
(\forall n \near \oo, (u_ n <= x)%E) -> (lim u_ <= x)%E.
Proof.
move=> /closed_cvg_loc V xu_; elim/V: _; last exact: closed_ereal_ge_ereal.
case: xu_ => m _ xu_.
near \oo => n.
have mn : (n >= m)%N by near: n; exists m.
by exists n => // k nk /=; exact: (xu_ _ (leq_trans mn nk)).
Grab Existential Variables. all: end_near. Qed.
(* NB: worth keeping in addition to cvgPpinfty? *)
Lemma cvgPpinfty_lt (R : realFieldType) (u_ : R ^nat) :
u_ --> +oo <-> forall A, A > 0 -> \forall n \near \oo, A < u_ n.
Proof.
split => [/cvgPpinfty uoo A A0|uoo]; last first.
by apply/cvgPpinfty => A {}/uoo [n _ uoo]; exists n => // m nm; apply/ltW/uoo.
have /uoo[n _ {}uoo] : 0 < A *+ 2 by rewrite pmulrn_lgt0.
exists n => // m nm; rewrite (@lt_le_trans _ _ (A *+ 2)) // ?mulr2n ?ltr_addr //.
exact: uoo.
Qed.
Lemma dvg_ereal_cvg (R : realFieldType) (u_ : R ^nat) :
u_ --> +oo -> (fun n => (u_ n)%:E) --> +oo%E.
Proof.
move/cvgPpinfty_lt => uoo; apply/cvg_ballP => _/posnumP[e]; rewrite near_map.
have [e1|e1] := lerP 1 e%:num.
case: (uoo _ ltr01) => k _ k1un; near=> n.
rewrite /ball /= /ereal_ball [contract +oo]/= ger0_norm ?subr_ge0; last first.
by move: (contract_le1 (u_ n)%:E); rewrite ler_norml => /andP[].
rewrite ltr_subl_addr addrC -ltr_subl_addr.
have /le_lt_trans->//: contract 1%:E < contract (u_ n)%:E.
by rewrite lt_contract lte_fin k1un//; near: n; exists k.
by rewrite (@le_trans _ _ 0) // ?subr_le0 //= normr1 divr_ge0.
have onee1 : `|1 - e%:num| < 1.
by rewrite gtr0_norm // ?subr_gt0 // ltr_subl_addl addrC -ltr_subl_addl subrr.
have : 0 < real_of_er (expand (1 - e%:num)).
rewrite -lte_fin real_of_er_expand //.
by rewrite lt_expandRL ?inE ?ltW// contract0 subr_gt0.
case/uoo => k _ k1un; near=> n.
rewrite /ball /= /ereal_ball [contract +oo]/= ger0_norm ?subr_ge0; last first.
by move: (contract_le1 (u_ n)%:E); rewrite ler_norml => /andP[].
rewrite ltr_subl_addr addrC -ltr_subl_addr.
suff : `|1 - e%:num| < contract (u_ n)%:E by exact: le_lt_trans (ler_norm _).
rewrite gtr0_norm ?subr_gt0 // -lt_expandLR ?inE ?ltW//.
by rewrite -real_of_er_expand // lte_fin k1un//; near: n; exists k.
Grab Existential Variables. all: end_near. Qed.
Lemma ereal_cvg_real (R : realFieldType) (f : {ereal R} ^nat) a :
{near \oo, forall x, is_real (f x)} /\
(real_of_er \o f --> a) <-> f --> a%:E.
Proof.
split=> [[[N _ foo] fa]|fa].
rewrite -(cvg_shiftn N).
have {fa} : [sequence (real_of_er (f (n + N)%N))]_n --> a.
by rewrite (@cvg_shiftn _ _ (real_of_er \o f)).
move/(@cvg_app _ _ _ _ (@ERFin R)).
apply: cvg_trans; apply: near_eq_cvg; near=> n => /=.
by rewrite -ERFin_real_of_er // foo//= leq_addl.
split; last first.
by move/(@cvg_app _ _ _ _ real_of_er) : fa; apply: cvg_trans; exact: cvg_id.
move/cvg_ballP : fa.
have e0 : 0 < minr (1 + contract a%:E) (1 - contract a%:E).
by rewrite lt_minr -ltr_subl_addl add0r subr_gt0 -ltr_norml contract_lt1.
move/(_ _ e0); rewrite near_map => -[N _ fa]; near=> n.
have /fa : (N <= n)%N by near: n; exists N.
rewrite /ball /= /ereal_ball; case: (f n) => //.
- rewrite ltr0_norm; first by rewrite opprB lt_minr ltxx andbF.
by rewrite -opprB ltr_oppl oppr0; move: e0; rewrite lt_minr => -/andP[].
- rewrite opprK gtr0_norm; first by rewrite lt_minr addrC ltxx.
by rewrite addrC; move: e0; rewrite lt_minr => -/andP[].
Grab Existential Variables. all: end_near. Qed.
Lemma nondecreasing_seq_ereal_cvg (R : realType) (u_ : nat -> {ereal R}) :
nondecreasing_seq u_ -> u_ --> ereal_sup (u_ @` setT).
Proof.
move=> nd_u_; set S := u_ @` setT; set l := ereal_sup S.
have [Spoo|Spoo] := pselect (S +oo%E).
have [N Nu] : exists N, forall n, (n >= N)%nat -> u_ n = +oo%E.
case: Spoo => N _ uNoo; exists N => n Nn.
by move: (nd_u_ _ _ Nn); rewrite uNoo lee_pinfty_eq => /eqP.
have -> : l = +oo%E by rewrite /l /ereal_sup; exact: supremum_pinfty.
rewrite -(cvg_shiftn N); set f := (X in X --> _).
rewrite (_ : f = (fun=> +oo%E)); first exact: cvg_cst.
by rewrite funeqE => n; rewrite /f /= Nu // leq_addl.
have [Snoo|Snoo] := pselect (u_ = fun=> -oo%E).
suff : l = -oo%E by move=> ->; rewrite Snoo; exact: cvg_cst.
rewrite /l.
suff -> : S = [set -oo%E] by rewrite ereal_sup_set1.
rewrite predeqE => x; split => [-[n _ <-]|->].
by rewrite Snoo.
by exists O => //; rewrite Snoo.
have [/eqP|lnoo] := boolP (l == -oo%E).
move/ereal_sup_ninfty => loo.
suff : u_ = (fun=> -oo%E) by [].
by rewrite funeqE => m; apply (loo (u_ m)); exists m.
apply/cvg_ballP => _/posnumP[e].
have [/eqP {lnoo}loo|lpoo] := boolP (l == +oo%E).
rewrite near_map; near=> n; rewrite /ball /= /ereal_ball.
have unoo : u_ n != -oo%E.
near: n.
have [m /eqP umoo] : exists m, u_ m <> -oo%E.
apply/existsNP => uoo.
by apply/Snoo; rewrite funeqE => ?; rewrite uoo.
exists m => // k mk; apply: contra umoo => /eqP ukoo.
by move/nd_u_ : mk; rewrite ukoo lee_ninfty_eq.
rewrite loo ger0_norm ?subr_ge0; last by case/ler_normlP : (contract_le1 (u_ n)).
have [e2|e2] := lerP 2 e%:num.
rewrite /= ltr_subl_addr addrC -ltr_subl_addr.
case/ler_normlP : (contract_le1 (u_ n)); rewrite ler_oppl => un1 _.
rewrite (@le_lt_trans _ _ (-1)) //.
by rewrite ler_subl_addr addrC -ler_subl_addr opprK (le_trans e2).
by move: un1; rewrite le_eqVlt eq_sym contract_eqN1 (negbTE unoo).
rewrite ltr_subl_addr addrC -ltr_subl_addr -lt_expandLR ?inE//=.
near: n.
suff [n Hn] : exists n, (expand (contract +oo - e%:num)%R < u_ n)%E.
by exists n => // m nm; rewrite (lt_le_trans Hn) //; apply nd_u_.
apply/not_existsP => abs.
have : (l <= expand (contract +oo - e%:num)%R)%E.
apply: ub_ereal_sup => x [n _ <-{x}].
rewrite leNgt; apply/negP/abs.
rewrite loo lee_pinfty_eq expand_eqoo ler_sub_addr addrC -ler_sub_addr.
by rewrite subrr; apply/negP; rewrite -ltNge.
have [e1|e1] := ltrP 1 e%:num.
by rewrite ler_subl_addr (le_trans (ltW e2)).
by rewrite ler_subl_addr ler_addl.
have [r lr] : exists r, l = r%:E by move: l lnoo lpoo => [] // r' _ _; exists r'.
have [re1|re1] := ltrP (`|contract l - e%:num|) 1; last first.
rewrite near_map; near=> n; rewrite /ball /= /ereal_ball /=.
have unoo : u_ n != -oo%E.
near: n.
have [m /eqP umoo] : exists m, u_ m <> -oo%E.
apply/existsNP => uoo.
by apply/Snoo; rewrite funeqE => ?; rewrite uoo.
exists m => // k mk; apply: contra umoo => /eqP ukoo.
by move/nd_u_ : mk; rewrite ukoo lee_ninfty_eq.
rewrite ger0_norm ?subr_ge0 ?le_contract ?ereal_sup_ub//; last by exists n.
have [l0|l0] := ger0P (contract l).
have ? : e%:num > contract r%:E.
rewrite ltNge; apply/negP => er.
rewrite lr ger0_norm ?subr_ge0// -ler_subl_addr opprK in re1.
case/ler_normlP : (contract_le1 r%:E) => _ /(le_trans re1); apply/negP.
by rewrite -ltNge ltr_addl.
rewrite lr ltr0_norm ?subr_lt0// opprB in re1.
rewrite ltr_subl_addr addrC -ltr_subl_addr -opprB ltr_oppl lr.
rewrite (lt_le_trans _ re1) // lt_neqAle eqr_oppLR contract_eqN1 unoo /=.
by case/ler_normlP : (contract_le1 (u_ n)).
rewrite ler0_norm in re1; last first.
by rewrite subr_le0 (le_trans (ltW l0)).
rewrite opprB ler_subr_addr addrC -ler_subr_addr in re1.
rewrite ltr_subl_addr (le_lt_trans re1) // -ltr_subl_addl addrAC subrr add0r.
rewrite lt_neqAle eq_sym contract_eqN1 unoo /=.
by case/ler_normlP : (contract_le1 (u_ n)); rewrite ler_oppl.
pose e' := r - real_of_er (expand (contract l - e%:num)).
have e'0 : 0 < e'.
rewrite /e' subr_gt0 -lte_fin real_of_er_expand //.
rewrite lt_expandLR ?inE ?ltW//.
by rewrite lr ltr_subl_addr // ltr_addl.
have [y [[m _] umx] Se'y] := @ub_ereal_sup_adherent _ S (PosNum e'0) _ lr.
rewrite near_map; near=> n; rewrite /ball /= /ereal_ball /=.
rewrite ger0_norm ?subr_ge0 ?le_contract ?ereal_sup_ub//; last by exists n.
move: Se'y; rewrite -{}umx {y} /= => le'um.
have leum : contract l - e%:num < contract (u_ m).
rewrite -lt_expandLR ?inE ?ltW//.
move: le'um; rewrite /e' NERFin -/l [in X in (X - _ < _)%E -> _]lr /= opprB.
by rewrite addrCA subrr addr0 real_of_er_expand //.
rewrite ltr_subl_addr addrC -ltr_subl_addr (lt_le_trans leum) //.
by rewrite le_contract nd_u_//; near: n; exists m.
Grab Existential Variables. all: end_near. Qed.
(* NB: see also nondecreasing_series *)
Lemma ereal_nondecreasing_series (R : realDomainType) (u_ : {ereal R} ^nat) :
(forall n, 0%:E <= u_ n)%E ->
nondecreasing_seq (fun n => \sum_(i < n) u_ i)%E.
Proof.
move=> u_ge0 n m nm; rewrite -(subnKC nm).
rewrite -[X in (_ <= X)%E](big_mkord xpredT) /index_iota subn0 iota_add.
rewrite big_cat -[in X in (_ <= X + _)%E](subn0 n) big_mkord lee_addl //=.
by rewrite sume_ge0.
Qed.
Lemma ereal_nneg_series_lim_ge (R : realType) (u_ : {ereal R} ^nat) k :
(forall n, (0%:E <= u_ n)%E) ->
(\sum_(i < k) u_ i <= lim (fun n : nat => \sum_(i < n) u_ i))%E.
Proof.
move/ereal_nondecreasing_series/nondecreasing_seq_ereal_cvg/cvg_lim => -> //.
by apply ereal_sup_ub; exists k.
Qed.
Lemma is_cvg_ereal_nneg_series_cond (R : realType) (u_ : {ereal R} ^nat)
(P : pred nat) : (forall n, P n -> (0%:E <= u_ n)%E) ->
cvg (fun n : nat => (\sum_(i < n | P i) u_ i)%E).
Proof.
move/lee_sum_nneg_ord/nondecreasing_seq_ereal_cvg => cu.
by apply/cvg_ex; eexists; exact: cu.
Qed.
Lemma is_cvg_ereal_nneg_series (R : realType) (u_ : {ereal R} ^nat) :
(forall n, (0%:E <= u_ n)%E) -> cvg (fun n : nat => (\sum_(i < n) u_ i)%E).
Proof. by move=> ?; exact: (@is_cvg_ereal_nneg_series_cond _ _ xpredT). Qed.
Lemma ereal_nneg_series_lim_ge0 (R : realType) (u_ : {ereal R} ^nat) :