-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdatasets_video.py
109 lines (92 loc) · 4.8 KB
/
datasets_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import torch
import torchvision
import torchvision.datasets as datasets
ROOT_DATASET = 'data'
def return_something(modality, root_data):
filename_categories = 'something/category.txt'
if modality == 'RGB':
filename_imglist_train = 'something/train_videofolder.txt'
filename_imglist_val = 'something/val_videofolder.txt'
prefix = '{:05d}.jpg'
elif modality == 'Flow':
root_data = '/data/vision/oliva/scratch/bzhou/video/something-something/flow'
filename_imglist_train = 'something/train_videofolder.txt'
filename_imglist_val = 'something/val_videofolder.txt'
prefix = '{:05d}.jpg'
else:
print('no such modality:' + modality)
exit()
return filename_categories, filename_imglist_train, filename_imglist_val, '', '', root_data, prefix
def return_somethingv2(modality, root_data):
filename_categories = 'something/v2/category.txt'
if modality == 'RGB':
filename_imglist_train = 'something/v2/train_videofolder.txt'
filename_imglist_val = 'something/v2/val_videofolder.txt'
prefix = '{:06d}.jpg'
elif modality == 'Flow':
root_data = '/mnt/localssd2/aandonia/something/v2/flow'
filename_imglist_train = 'something/v2/train_videofolder.txt'
filename_imglist_val = 'something/v2/val_videofolder.txt'
prefix = '{:06d}.jpg'
else:
print('no such modality:'+modality)
return filename_categories, filename_imglist_train, filename_imglist_val, '', '', root_data, prefix
def return_jester(modality, root_data):
filename_categories = 'jester/category.txt'
if modality == 'RGB':
prefix = '{:05d}.jpg'
filename_imglist_train = 'jester/train_videofolder.txt'
filename_imglist_val = 'jester/val_videofolder.txt'
elif modality == 'Flow':
root_data = '/data/vision/oliva/scratch/bzhou/video/jester/flow'
filename_imglist_train = 'jester/train_videofolder.txt'
filename_imglist_val = 'jester/val_videofolder.txt'
prefix = '{:05d}.jpg'
else:
print('no such modality:'+modality)
exit()
return filename_categories, filename_imglist_train, filename_imglist_val, '', '', root_data, prefix
def return_charades(modality, root_data):
filename_categories = 'Charades_v1/Charades/categories.txt'
filename_imglist_train = 'Charades_v1/Charades/train_segments.txt'
filename_imglist_val = 'Charades_v1/Charades/test_segments.txt'
filename_numlist_train = 'Charades_v1/Charades/train_frameno.txt'
filename_numlist_val = 'Charades_v1/Charades/test_frameno.txt'
if modality == 'RGB':
prefix = '{}-{:06d}.jpg'
else:
print('no such modality:'+modality)
exit()
return filename_categories, filename_imglist_train, filename_imglist_val, filename_numlist_train, filename_numlist_val, root_data, prefix
def return_moments(modality):
filename_categories = '/data/vision/oliva/scratch/moments/split/categoryList_nov17.csv'
if modality == 'RGB':
prefix = '{:06d}.jpg'
root_data = '/data/vision/oliva/scratch/moments/moments_nov17_frames'
filename_imglist_train = '/data/vision/oliva/scratch/moments/split/rgb_trainingSet_nov17.csv'
filename_imglist_val = '/data/vision/oliva/scratch/moments/split/rgb_validationSet_nov17.csv'
elif modality == 'Flow':
root_data = '/data/vision/oliva/scratch/moments/moments_nov17_flow'
prefix = 'flow_xyz_{:05d}.jpg'
filename_imglist_train = '/data/vision/oliva/scratch/moments/split/flow_trainingSet_nov17.csv'
filename_imglist_val = '/data/vision/oliva/scratch/moments/split/flow_validationSet_nov17.csv'
else:
exit()
return filename_categories, filename_imglist_train, filename_imglist_val, root_data, prefix
def return_dataset(dataset, modality, root_data):
dict_single = {'jester': return_jester, 'something': return_something, 'somethingv2': return_somethingv2,
'charades': return_charades, 'moments': return_moments}
if dataset in dict_single:
file_categories, file_imglist_train, file_imglist_val, file_numlist_train, file_numlist_val, root_data, prefix = dict_single[dataset](modality, root_data)
else:
raise ValueError('Unknown dataset '+dataset)
file_imglist_train = os.path.join(ROOT_DATASET, file_imglist_train)
file_imglist_val = os.path.join(ROOT_DATASET, file_imglist_val)
file_numlist_train = os.path.join(ROOT_DATASET, file_numlist_train)
file_numlist_val = os.path.join(ROOT_DATASET, file_numlist_val)
file_categories = os.path.join(ROOT_DATASET, file_categories)
with open(file_categories) as f:
lines = f.readlines()
categories = [item.rstrip() for item in lines]
return categories, file_imglist_train, file_imglist_val, file_numlist_train, file_numlist_val, root_data, prefix