-
Notifications
You must be signed in to change notification settings - Fork 900
/
Copy pathBfgsMinimizer.cs
139 lines (120 loc) · 6.6 KB
/
BfgsMinimizer.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// <copyright file="BfgsMinimizer.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Optimization.LineSearch;
namespace MathNet.Numerics.Optimization
{
/// <summary>
/// Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems
/// </summary>
public class BfgsMinimizer : BfgsMinimizerBase, IUnconstrainedMinimizer
{
/// <summary>
/// Creates BFGS minimizer
/// </summary>
/// <param name="gradientTolerance">The gradient tolerance</param>
/// <param name="parameterTolerance">The parameter tolerance</param>
/// <param name="functionProgressTolerance">The function progress tolerance</param>
/// <param name="maximumIterations">The maximum number of iterations</param>
public BfgsMinimizer(double gradientTolerance, double parameterTolerance, double functionProgressTolerance, int maximumIterations=1000)
:base(gradientTolerance,parameterTolerance,functionProgressTolerance,maximumIterations)
{
}
/// <summary>
/// Find the minimum of the objective function given lower and upper bounds
/// </summary>
/// <param name="objective">The objective function, must support a gradient</param>
/// <param name="initialGuess">The initial guess</param>
/// <returns>The MinimizationResult which contains the minimum and the ExitCondition</returns>
public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector<double> initialGuess)
{
if (!objective.IsGradientSupported)
throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for BFGS minimization.");
objective.EvaluateAt(initialGuess);
ValidateGradientAndObjective(objective);
// Check that we're not already done
ExitCondition currentExitCondition = ExitCriteriaSatisfied(objective, null, 0);
if (currentExitCondition != ExitCondition.None)
return new MinimizationResult(objective, 0, currentExitCondition);
// Set up line search algorithm
var lineSearcher = new WeakWolfeLineSearch(1e-4, 0.9, Math.Max(ParameterTolerance, 1e-10), 1000);
// First step
var inversePseudoHessian = CreateMatrix.DenseIdentity<double>(initialGuess.Count);
var lineSearchDirection = -objective.Gradient;
var stepSize = 100 * GradientTolerance / (lineSearchDirection * lineSearchDirection);
var previousPoint = objective;
LineSearchResult lineSearchResult;
try
{
lineSearchResult = lineSearcher.FindConformingStep(objective, lineSearchDirection, stepSize);
}
catch (OptimizationException e)
{
throw new InnerOptimizationException("Line search failed.", e);
}
catch (ArgumentException e)
{
throw new InnerOptimizationException("Line search failed.", e);
}
var candidate = lineSearchResult.FunctionInfoAtMinimum;
ValidateGradientAndObjective(candidate);
var step = candidate.Point - initialGuess;
// Subsequent steps
int totalLineSearchSteps = lineSearchResult.Iterations;
int iterationsWithNontrivialLineSearch = lineSearchResult.Iterations > 0 ? 0 : 1;
var iterations = DoBfgsUpdate(ref currentExitCondition, lineSearcher, ref inversePseudoHessian, ref lineSearchDirection, ref previousPoint, ref lineSearchResult, ref candidate, ref step, ref totalLineSearchSteps, ref iterationsWithNontrivialLineSearch);
if (iterations == MaximumIterations && currentExitCondition == ExitCondition.None)
{
throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({MaximumIterations}) reached."));
}
return new MinimizationWithLineSearchResult(candidate, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
}
protected override Vector<double> CalculateSearchDirection(ref Matrix<double> inversePseudoHessian,
out double maxLineSearchStep,
out double startingStepSize,
IObjectiveFunction previousPoint,
IObjectiveFunction candidate,
Vector<double> step)
{
startingStepSize = 1.0;
maxLineSearchStep = double.PositiveInfinity;
var y = candidate.Gradient - previousPoint.Gradient;
double sy = step * y;
inversePseudoHessian = inversePseudoHessian + ((sy + y * inversePseudoHessian * y) / Math.Pow(sy, 2.0)) * step.OuterProduct(step) - ((inversePseudoHessian * y.ToColumnMatrix()) * step.ToRowMatrix() + step.ToColumnMatrix() * (y.ToRowMatrix() * inversePseudoHessian)) * (1.0 / sy);
var lineSearchDirection = -inversePseudoHessian * candidate.Gradient;
if (lineSearchDirection * candidate.Gradient >= 0.0)
{
lineSearchDirection = -candidate.Gradient;
inversePseudoHessian = CreateMatrix.DenseIdentity<double>(candidate.Point.Count);
}
return lineSearchDirection;
}
}
}