-
Notifications
You must be signed in to change notification settings - Fork 491
/
tx_fetcher.go
1061 lines (921 loc) · 37.2 KB
/
tx_fetcher.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package fetcher
import (
"bytes"
"errors"
"fmt"
"math"
mrand "math/rand"
"sort"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/lru"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
)
const (
// maxTxAnnounces is the maximum number of unique transaction a peer
// can announce in a short time.
maxTxAnnounces = 4096
// maxTxRetrievals is the maximum number of transactions that can be fetched
// in one request. The rationale for picking 256 is to have a reasonabe lower
// bound for the transferred data (don't waste RTTs, transfer more meaningful
// batch sizes), but also have an upper bound on the sequentiality to allow
// using our entire peerset for deliveries.
//
// This number also acts as a failsafe against malicious announces which might
// cause us to request more data than we'd expect.
maxTxRetrievals = 256
// maxTxRetrievalSize is the max number of bytes that delivered transactions
// should weigh according to the announcements. The 128KB was chosen to limit
// retrieving a maximum of one blob transaction at a time to minimize hogging
// a connection between two peers.
maxTxRetrievalSize = 128 * 1024
// maxTxUnderpricedSetSize is the size of the underpriced transaction set that
// is used to track recent transactions that have been dropped so we don't
// re-request them.
maxTxUnderpricedSetSize = 32768
// maxTxUnderpricedTimeout is the max time a transaction should be stuck in the underpriced set.
maxTxUnderpricedTimeout = 5 * time.Minute
// txArriveTimeout is the time allowance before an announced transaction is
// explicitly requested.
txArriveTimeout = 500 * time.Millisecond
// txGatherSlack is the interval used to collate almost-expired announces
// with network fetches.
txGatherSlack = 100 * time.Millisecond
)
var (
// txFetchTimeout is the maximum allotted time to return an explicitly
// requested transaction.
txFetchTimeout = 5 * time.Second
)
var (
txAnnounceInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/in", nil)
txAnnounceKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/known", nil)
txAnnounceUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/underpriced", nil)
txAnnounceDOSMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/dos", nil)
txBroadcastInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/in", nil)
txBroadcastKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/known", nil)
txBroadcastUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/underpriced", nil)
txBroadcastOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/otherreject", nil)
txRequestOutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/out", nil)
txRequestFailMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/fail", nil)
txRequestDoneMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/done", nil)
txRequestTimeoutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/timeout", nil)
txReplyInMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/in", nil)
txReplyKnownMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/known", nil)
txReplyUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/underpriced", nil)
txReplyOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/otherreject", nil)
txFetcherWaitingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/peers", nil)
txFetcherWaitingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/hashes", nil)
txFetcherQueueingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/peers", nil)
txFetcherQueueingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/hashes", nil)
txFetcherFetchingPeers = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/peers", nil)
txFetcherFetchingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/hashes", nil)
)
// txAnnounce is the notification of the availability of a batch
// of new transactions in the network.
type txAnnounce struct {
origin string // Identifier of the peer originating the notification
hashes []common.Hash // Batch of transaction hashes being announced
metas []*txMetadata // Batch of metadatas associated with the hashes (nil before eth/68)
}
// txMetadata is a set of extra data transmitted along the announcement for better
// fetch scheduling.
type txMetadata struct {
kind byte // Transaction consensus type
size uint32 // Transaction size in bytes
}
// txRequest represents an in-flight transaction retrieval request destined to
// a specific peers.
type txRequest struct {
hashes []common.Hash // Transactions having been requested
stolen map[common.Hash]struct{} // Deliveries by someone else (don't re-request)
time mclock.AbsTime // Timestamp of the request
}
// txDelivery is the notification that a batch of transactions have been added
// to the pool and should be untracked.
type txDelivery struct {
origin string // Identifier of the peer originating the notification
hashes []common.Hash // Batch of transaction hashes having been delivered
metas []txMetadata // Batch of metadatas associated with the delivered hashes
direct bool // Whether this is a direct reply or a broadcast
}
// txDrop is the notification that a peer has disconnected.
type txDrop struct {
peer string
}
// TxFetcher is responsible for retrieving new transaction based on announcements.
//
// The fetcher operates in 3 stages:
// - Transactions that are newly discovered are moved into a wait list.
// - After ~500ms passes, transactions from the wait list that have not been
// broadcast to us in whole are moved into a queueing area.
// - When a connected peer doesn't have in-flight retrieval requests, any
// transaction queued up (and announced by the peer) are allocated to the
// peer and moved into a fetching status until it's fulfilled or fails.
//
// The invariants of the fetcher are:
// - Each tracked transaction (hash) must only be present in one of the
// three stages. This ensures that the fetcher operates akin to a finite
// state automata and there's do data leak.
// - Each peer that announced transactions may be scheduled retrievals, but
// only ever one concurrently. This ensures we can immediately know what is
// missing from a reply and reschedule it.
type TxFetcher struct {
notify chan *txAnnounce
cleanup chan *txDelivery
drop chan *txDrop
quit chan struct{}
underpriced *lru.Cache[common.Hash, time.Time] // Transactions discarded as too cheap (don't re-fetch)
// Stage 1: Waiting lists for newly discovered transactions that might be
// broadcast without needing explicit request/reply round trips.
waitlist map[common.Hash]map[string]struct{} // Transactions waiting for an potential broadcast
waittime map[common.Hash]mclock.AbsTime // Timestamps when transactions were added to the waitlist
waitslots map[string]map[common.Hash]*txMetadata // Waiting announcements grouped by peer (DoS protection)
// Stage 2: Queue of transactions that waiting to be allocated to some peer
// to be retrieved directly.
announces map[string]map[common.Hash]*txMetadata // Set of announced transactions, grouped by origin peer
announced map[common.Hash]map[string]struct{} // Set of download locations, grouped by transaction hash
// Stage 3: Set of transactions currently being retrieved, some which may be
// fulfilled and some rescheduled. Note, this step shares 'announces' from the
// previous stage to avoid having to duplicate (need it for DoS checks).
fetching map[common.Hash]string // Transaction set currently being retrieved
requests map[string]*txRequest // In-flight transaction retrievals
alternates map[common.Hash]map[string]struct{} // In-flight transaction alternate origins if retrieval fails
// Callbacks
hasTx func(common.Hash) bool // Retrieves a tx from the local txpool
addTxs func([]*types.Transaction) []error // Insert a batch of transactions into local txpool
fetchTxs func(string, []common.Hash) error // Retrieves a set of txs from a remote peer
dropPeer func(string) // Drops a peer in case of announcement violation
step chan struct{} // Notification channel when the fetcher loop iterates
clock mclock.Clock // Time wrapper to simulate in tests
rand *mrand.Rand // Randomizer to use in tests instead of map range loops (soft-random)
}
// NewTxFetcher creates a transaction fetcher to retrieve transaction
// based on hash announcements.
func NewTxFetcher(hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error, dropPeer func(string)) *TxFetcher {
return NewTxFetcherForTests(hasTx, addTxs, fetchTxs, dropPeer, mclock.System{}, nil)
}
// NewTxFetcherForTests is a testing method to mock out the realtime clock with
// a simulated version and the internal randomness with a deterministic one.
func NewTxFetcherForTests(
hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error, dropPeer func(string),
clock mclock.Clock, rand *mrand.Rand) *TxFetcher {
return &TxFetcher{
notify: make(chan *txAnnounce),
cleanup: make(chan *txDelivery),
drop: make(chan *txDrop),
quit: make(chan struct{}),
waitlist: make(map[common.Hash]map[string]struct{}),
waittime: make(map[common.Hash]mclock.AbsTime),
waitslots: make(map[string]map[common.Hash]*txMetadata),
announces: make(map[string]map[common.Hash]*txMetadata),
announced: make(map[common.Hash]map[string]struct{}),
fetching: make(map[common.Hash]string),
requests: make(map[string]*txRequest),
alternates: make(map[common.Hash]map[string]struct{}),
underpriced: lru.NewCache[common.Hash, time.Time](maxTxUnderpricedSetSize),
hasTx: hasTx,
addTxs: addTxs,
fetchTxs: fetchTxs,
dropPeer: dropPeer,
clock: clock,
rand: rand,
}
}
// Notify announces the fetcher of the potential availability of a new batch of
// transactions in the network.
func (f *TxFetcher) Notify(peer string, types []byte, sizes []uint32, hashes []common.Hash) error {
// Keep track of all the announced transactions
txAnnounceInMeter.Mark(int64(len(hashes)))
// Skip any transaction announcements that we already know of, or that we've
// previously marked as cheap and discarded. This check is of course racy,
// because multiple concurrent notifies will still manage to pass it, but it's
// still valuable to check here because it runs concurrent to the internal
// loop, so anything caught here is time saved internally.
var (
unknownHashes = make([]common.Hash, 0, len(hashes))
unknownMetas = make([]*txMetadata, 0, len(hashes))
duplicate int64
underpriced int64
)
for i, hash := range hashes {
switch {
case f.hasTx(hash):
duplicate++
case f.isKnownUnderpriced(hash):
underpriced++
default:
unknownHashes = append(unknownHashes, hash)
if types == nil {
unknownMetas = append(unknownMetas, nil)
} else {
unknownMetas = append(unknownMetas, &txMetadata{kind: types[i], size: sizes[i]})
}
}
}
txAnnounceKnownMeter.Mark(duplicate)
txAnnounceUnderpricedMeter.Mark(underpriced)
// If anything's left to announce, push it into the internal loop
if len(unknownHashes) == 0 {
return nil
}
announce := &txAnnounce{origin: peer, hashes: unknownHashes, metas: unknownMetas}
select {
case f.notify <- announce:
return nil
case <-f.quit:
return errTerminated
}
}
// isKnownUnderpriced reports whether a transaction hash was recently found to be underpriced.
func (f *TxFetcher) isKnownUnderpriced(hash common.Hash) bool {
prevTime, ok := f.underpriced.Peek(hash)
if ok && prevTime.Before(time.Now().Add(-maxTxUnderpricedTimeout)) {
f.underpriced.Remove(hash)
return false
}
return ok
}
// Enqueue imports a batch of received transaction into the transaction pool
// and the fetcher. This method may be called by both transaction broadcasts and
// direct request replies. The differentiation is important so the fetcher can
// re-schedule missing transactions as soon as possible.
func (f *TxFetcher) Enqueue(peer string, txs []*types.Transaction, direct bool) error {
var (
inMeter = txReplyInMeter
knownMeter = txReplyKnownMeter
underpricedMeter = txReplyUnderpricedMeter
otherRejectMeter = txReplyOtherRejectMeter
)
if !direct {
inMeter = txBroadcastInMeter
knownMeter = txBroadcastKnownMeter
underpricedMeter = txBroadcastUnderpricedMeter
otherRejectMeter = txBroadcastOtherRejectMeter
}
// Keep track of all the propagated transactions
inMeter.Mark(int64(len(txs)))
// Push all the transactions into the pool, tracking underpriced ones to avoid
// re-requesting them and dropping the peer in case of malicious transfers.
var (
added = make([]common.Hash, 0, len(txs))
metas = make([]txMetadata, 0, len(txs))
)
// proceed in batches
for i := 0; i < len(txs); i += 128 {
end := i + 128
if end > len(txs) {
end = len(txs)
}
var (
duplicate int64
underpriced int64
otherreject int64
)
batch := txs[i:end]
for j, err := range f.addTxs(batch) {
// Track the transaction hash if the price is too low for us.
// Avoid re-request this transaction when we receive another
// announcement.
if errors.Is(err, txpool.ErrUnderpriced) || errors.Is(err, txpool.ErrReplaceUnderpriced) {
f.underpriced.Add(batch[j].Hash(), batch[j].Time())
}
// Track a few interesting failure types
switch {
case err == nil: // Noop, but need to handle to not count these
case errors.Is(err, txpool.ErrAlreadyKnown):
duplicate++
case errors.Is(err, txpool.ErrUnderpriced) || errors.Is(err, txpool.ErrReplaceUnderpriced):
underpriced++
default:
otherreject++
}
added = append(added, batch[j].Hash())
metas = append(metas, txMetadata{
kind: batch[j].Type(),
size: uint32(batch[j].Size()),
})
}
knownMeter.Mark(duplicate)
underpricedMeter.Mark(underpriced)
otherRejectMeter.Mark(otherreject)
// If 'other reject' is >25% of the deliveries in any batch, sleep a bit.
if otherreject > 128/4 {
time.Sleep(200 * time.Millisecond)
log.Debug("Peer delivering stale transactions", "peer", peer, "rejected", otherreject)
}
}
select {
case f.cleanup <- &txDelivery{origin: peer, hashes: added, metas: metas, direct: direct}:
return nil
case <-f.quit:
return errTerminated
}
}
// Drop should be called when a peer disconnects. It cleans up all the internal
// data structures of the given node.
func (f *TxFetcher) Drop(peer string) error {
select {
case f.drop <- &txDrop{peer: peer}:
return nil
case <-f.quit:
return errTerminated
}
}
// Start boots up the announcement based synchroniser, accepting and processing
// hash notifications and block fetches until termination requested.
func (f *TxFetcher) Start() {
go f.loop()
}
// Stop terminates the announcement based synchroniser, canceling all pending
// operations.
func (f *TxFetcher) Stop() {
close(f.quit)
}
func (f *TxFetcher) loop() {
var (
waitTimer = new(mclock.Timer)
timeoutTimer = new(mclock.Timer)
waitTrigger = make(chan struct{}, 1)
timeoutTrigger = make(chan struct{}, 1)
)
for {
select {
case ann := <-f.notify:
// Drop part of the new announcements if there are too many accumulated.
// Note, we could but do not filter already known transactions here as
// the probability of something arriving between this call and the pre-
// filter outside is essentially zero.
used := len(f.waitslots[ann.origin]) + len(f.announces[ann.origin])
if used >= maxTxAnnounces {
// This can happen if a set of transactions are requested but not
// all fulfilled, so the remainder are rescheduled without the cap
// check. Should be fine as the limit is in the thousands and the
// request size in the hundreds.
txAnnounceDOSMeter.Mark(int64(len(ann.hashes)))
break
}
want := used + len(ann.hashes)
if want > maxTxAnnounces {
txAnnounceDOSMeter.Mark(int64(want - maxTxAnnounces))
ann.hashes = ann.hashes[:want-maxTxAnnounces]
ann.metas = ann.metas[:want-maxTxAnnounces]
}
// All is well, schedule the remainder of the transactions
idleWait := len(f.waittime) == 0
_, oldPeer := f.announces[ann.origin]
for i, hash := range ann.hashes {
// If the transaction is already downloading, add it to the list
// of possible alternates (in case the current retrieval fails) and
// also account it for the peer.
if f.alternates[hash] != nil {
f.alternates[hash][ann.origin] = struct{}{}
// Stage 2 and 3 share the set of origins per tx
if announces := f.announces[ann.origin]; announces != nil {
announces[hash] = ann.metas[i]
} else {
f.announces[ann.origin] = map[common.Hash]*txMetadata{hash: ann.metas[i]}
}
continue
}
// If the transaction is not downloading, but is already queued
// from a different peer, track it for the new peer too.
if f.announced[hash] != nil {
f.announced[hash][ann.origin] = struct{}{}
// Stage 2 and 3 share the set of origins per tx
if announces := f.announces[ann.origin]; announces != nil {
announces[hash] = ann.metas[i]
} else {
f.announces[ann.origin] = map[common.Hash]*txMetadata{hash: ann.metas[i]}
}
continue
}
// If the transaction is already known to the fetcher, but not
// yet downloading, add the peer as an alternate origin in the
// waiting list.
if f.waitlist[hash] != nil {
// Ignore double announcements from the same peer. This is
// especially important if metadata is also passed along to
// prevent malicious peers flip-flopping good/bad values.
if _, ok := f.waitlist[hash][ann.origin]; ok {
continue
}
f.waitlist[hash][ann.origin] = struct{}{}
if waitslots := f.waitslots[ann.origin]; waitslots != nil {
waitslots[hash] = ann.metas[i]
} else {
f.waitslots[ann.origin] = map[common.Hash]*txMetadata{hash: ann.metas[i]}
}
continue
}
// Transaction unknown to the fetcher, insert it into the waiting list
f.waitlist[hash] = map[string]struct{}{ann.origin: {}}
f.waittime[hash] = f.clock.Now()
if waitslots := f.waitslots[ann.origin]; waitslots != nil {
waitslots[hash] = ann.metas[i]
} else {
f.waitslots[ann.origin] = map[common.Hash]*txMetadata{hash: ann.metas[i]}
}
}
// If a new item was added to the waitlist, schedule it into the fetcher
if idleWait && len(f.waittime) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
// If this peer is new and announced something already queued, maybe
// request transactions from them
if !oldPeer && len(f.announces[ann.origin]) > 0 {
f.scheduleFetches(timeoutTimer, timeoutTrigger, map[string]struct{}{ann.origin: {}})
}
case <-waitTrigger:
// At least one transaction's waiting time ran out, push all expired
// ones into the retrieval queues
actives := make(map[string]struct{})
for hash, instance := range f.waittime {
if time.Duration(f.clock.Now()-instance)+txGatherSlack > txArriveTimeout {
// Transaction expired without propagation, schedule for retrieval
if f.announced[hash] != nil {
panic("announce tracker already contains waitlist item")
}
f.announced[hash] = f.waitlist[hash]
for peer := range f.waitlist[hash] {
if announces := f.announces[peer]; announces != nil {
announces[hash] = f.waitslots[peer][hash]
} else {
f.announces[peer] = map[common.Hash]*txMetadata{hash: f.waitslots[peer][hash]}
}
delete(f.waitslots[peer], hash)
if len(f.waitslots[peer]) == 0 {
delete(f.waitslots, peer)
}
actives[peer] = struct{}{}
}
delete(f.waittime, hash)
delete(f.waitlist, hash)
}
}
// If transactions are still waiting for propagation, reschedule the wait timer
if len(f.waittime) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
// If any peers became active and are idle, request transactions from them
if len(actives) > 0 {
f.scheduleFetches(timeoutTimer, timeoutTrigger, actives)
}
case <-timeoutTrigger:
// Clean up any expired retrievals and avoid re-requesting them from the
// same peer (either overloaded or malicious, useless in both cases). We
// could also penalize (Drop), but there's nothing to gain, and if could
// possibly further increase the load on it.
for peer, req := range f.requests {
if time.Duration(f.clock.Now()-req.time)+txGatherSlack > txFetchTimeout {
txRequestTimeoutMeter.Mark(int64(len(req.hashes)))
// Reschedule all the not-yet-delivered fetches to alternate peers
for _, hash := range req.hashes {
// Skip rescheduling hashes already delivered by someone else
if req.stolen != nil {
if _, ok := req.stolen[hash]; ok {
continue
}
}
// Move the delivery back from fetching to queued
if _, ok := f.announced[hash]; ok {
panic("announced tracker already contains alternate item")
}
if f.alternates[hash] != nil { // nil if tx was broadcast during fetch
f.announced[hash] = f.alternates[hash]
}
delete(f.announced[hash], peer)
if len(f.announced[hash]) == 0 {
delete(f.announced, hash)
}
delete(f.announces[peer], hash)
delete(f.alternates, hash)
delete(f.fetching, hash)
}
if len(f.announces[peer]) == 0 {
delete(f.announces, peer)
}
// Keep track of the request as dangling, but never expire
f.requests[peer].hashes = nil
}
}
// Schedule a new transaction retrieval
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
// No idea if we scheduled something or not, trigger the timer if needed
// TODO(karalabe): this is kind of lame, can't we dump it into scheduleFetches somehow?
f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
case delivery := <-f.cleanup:
// Independent if the delivery was direct or broadcast, remove all
// traces of the hash from internal trackers. That said, compare any
// advertised metadata with the real ones and drop bad peers.
for i, hash := range delivery.hashes {
if _, ok := f.waitlist[hash]; ok {
for peer, txset := range f.waitslots {
if meta := txset[hash]; meta != nil {
if delivery.metas[i].kind != meta.kind {
log.Warn("Announced transaction type mismatch", "peer", peer, "tx", hash, "type", delivery.metas[i].kind, "ann", meta.kind)
f.dropPeer(peer)
} else if delivery.metas[i].size != meta.size {
if math.Abs(float64(delivery.metas[i].size)-float64(meta.size)) > 8 {
log.Warn("Announced transaction size mismatch", "peer", peer, "tx", hash, "size", delivery.metas[i].size, "ann", meta.size)
// Normally we should drop a peer considering this is a protocol violation.
// However, due to the RLP vs consensus format messyness, allow a few bytes
// wiggle-room where we only warn, but don't drop.
//
// TODO(karalabe): Get rid of this relaxation when clients are proven stable.
f.dropPeer(peer)
}
}
}
delete(txset, hash)
if len(txset) == 0 {
delete(f.waitslots, peer)
}
}
delete(f.waitlist, hash)
delete(f.waittime, hash)
} else {
for peer, txset := range f.announces {
if meta := txset[hash]; meta != nil {
if delivery.metas[i].kind != meta.kind {
log.Warn("Announced transaction type mismatch", "peer", peer, "tx", hash, "type", delivery.metas[i].kind, "ann", meta.kind)
f.dropPeer(peer)
} else if delivery.metas[i].size != meta.size {
if math.Abs(float64(delivery.metas[i].size)-float64(meta.size)) > 8 {
log.Warn("Announced transaction size mismatch", "peer", peer, "tx", hash, "size", delivery.metas[i].size, "ann", meta.size)
// Normally we should drop a peer considering this is a protocol violation.
// However, due to the RLP vs consensus format messyness, allow a few bytes
// wiggle-room where we only warn, but don't drop.
//
// TODO(karalabe): Get rid of this relaxation when clients are proven stable.
f.dropPeer(peer)
}
}
}
delete(txset, hash)
if len(txset) == 0 {
delete(f.announces, peer)
}
}
delete(f.announced, hash)
delete(f.alternates, hash)
// If a transaction currently being fetched from a different
// origin was delivered (delivery stolen), mark it so the
// actual delivery won't double schedule it.
if origin, ok := f.fetching[hash]; ok && (origin != delivery.origin || !delivery.direct) {
stolen := f.requests[origin].stolen
if stolen == nil {
f.requests[origin].stolen = make(map[common.Hash]struct{})
stolen = f.requests[origin].stolen
}
stolen[hash] = struct{}{}
}
delete(f.fetching, hash)
}
}
// In case of a direct delivery, also reschedule anything missing
// from the original query
if delivery.direct {
// Mark the requesting successful (independent of individual status)
txRequestDoneMeter.Mark(int64(len(delivery.hashes)))
// Make sure something was pending, nuke it
req := f.requests[delivery.origin]
if req == nil {
log.Warn("Unexpected transaction delivery", "peer", delivery.origin)
break
}
delete(f.requests, delivery.origin)
// Anything not delivered should be re-scheduled (with or without
// this peer, depending on the response cutoff)
delivered := make(map[common.Hash]struct{})
for _, hash := range delivery.hashes {
delivered[hash] = struct{}{}
}
cutoff := len(req.hashes) // If nothing is delivered, assume everything is missing, don't retry!!!
for i, hash := range req.hashes {
if _, ok := delivered[hash]; ok {
cutoff = i
}
}
// Reschedule missing hashes from alternates, not-fulfilled from alt+self
for i, hash := range req.hashes {
// Skip rescheduling hashes already delivered by someone else
if req.stolen != nil {
if _, ok := req.stolen[hash]; ok {
continue
}
}
if _, ok := delivered[hash]; !ok {
if i < cutoff {
delete(f.alternates[hash], delivery.origin)
delete(f.announces[delivery.origin], hash)
if len(f.announces[delivery.origin]) == 0 {
delete(f.announces, delivery.origin)
}
}
if len(f.alternates[hash]) > 0 {
if _, ok := f.announced[hash]; ok {
panic(fmt.Sprintf("announced tracker already contains alternate item: %v", f.announced[hash]))
}
f.announced[hash] = f.alternates[hash]
}
}
delete(f.alternates, hash)
delete(f.fetching, hash)
}
// Something was delivered, try to reschedule requests
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) // Partial delivery may enable others to deliver too
}
case drop := <-f.drop:
// A peer was dropped, remove all traces of it
if _, ok := f.waitslots[drop.peer]; ok {
for hash := range f.waitslots[drop.peer] {
delete(f.waitlist[hash], drop.peer)
if len(f.waitlist[hash]) == 0 {
delete(f.waitlist, hash)
delete(f.waittime, hash)
}
}
delete(f.waitslots, drop.peer)
if len(f.waitlist) > 0 {
f.rescheduleWait(waitTimer, waitTrigger)
}
}
// Clean up any active requests
var request *txRequest
if request = f.requests[drop.peer]; request != nil {
for _, hash := range request.hashes {
// Skip rescheduling hashes already delivered by someone else
if request.stolen != nil {
if _, ok := request.stolen[hash]; ok {
continue
}
}
// Undelivered hash, reschedule if there's an alternative origin available
delete(f.alternates[hash], drop.peer)
if len(f.alternates[hash]) == 0 {
delete(f.alternates, hash)
} else {
f.announced[hash] = f.alternates[hash]
delete(f.alternates, hash)
}
delete(f.fetching, hash)
}
delete(f.requests, drop.peer)
}
// Clean up general announcement tracking
if _, ok := f.announces[drop.peer]; ok {
for hash := range f.announces[drop.peer] {
delete(f.announced[hash], drop.peer)
if len(f.announced[hash]) == 0 {
delete(f.announced, hash)
}
}
delete(f.announces, drop.peer)
}
// If a request was cancelled, check if anything needs to be rescheduled
if request != nil {
f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
}
case <-f.quit:
return
}
// No idea what happened, but bump some sanity metrics
txFetcherWaitingPeers.Update(int64(len(f.waitslots)))
txFetcherWaitingHashes.Update(int64(len(f.waitlist)))
txFetcherQueueingPeers.Update(int64(len(f.announces) - len(f.requests)))
txFetcherQueueingHashes.Update(int64(len(f.announced)))
txFetcherFetchingPeers.Update(int64(len(f.requests)))
txFetcherFetchingHashes.Update(int64(len(f.fetching)))
// Loop did something, ping the step notifier if needed (tests)
if f.step != nil {
f.step <- struct{}{}
}
}
}
// rescheduleWait iterates over all the transactions currently in the waitlist
// and schedules the movement into the fetcher for the earliest.
//
// The method has a granularity of 'txGatherSlack', since there's not much point in
// spinning over all the transactions just to maybe find one that should trigger
// a few ms earlier.
func (f *TxFetcher) rescheduleWait(timer *mclock.Timer, trigger chan struct{}) {
if *timer != nil {
(*timer).Stop()
}
now := f.clock.Now()
earliest := now
for _, instance := range f.waittime {
if earliest > instance {
earliest = instance
if txArriveTimeout-time.Duration(now-earliest) < txGatherSlack {
break
}
}
}
*timer = f.clock.AfterFunc(txArriveTimeout-time.Duration(now-earliest), func() {
trigger <- struct{}{}
})
}
// rescheduleTimeout iterates over all the transactions currently in flight and
// schedules a cleanup run when the first would trigger.
//
// The method has a granularity of 'txGatherSlack', since there's not much point in
// spinning over all the transactions just to maybe find one that should trigger
// a few ms earlier.
//
// This method is a bit "flaky" "by design". In theory the timeout timer only ever
// should be rescheduled if some request is pending. In practice, a timeout will
// cause the timer to be rescheduled every 5 secs (until the peer comes through or
// disconnects). This is a limitation of the fetcher code because we don't trac
// pending requests and timed out requests separately. Without double tracking, if
// we simply didn't reschedule the timer on all-timeout then the timer would never
// be set again since len(request) > 0 => something's running.
func (f *TxFetcher) rescheduleTimeout(timer *mclock.Timer, trigger chan struct{}) {
if *timer != nil {
(*timer).Stop()
}
now := f.clock.Now()
earliest := now
for _, req := range f.requests {
// If this request already timed out, skip it altogether
if req.hashes == nil {
continue
}
if earliest > req.time {
earliest = req.time
if txFetchTimeout-time.Duration(now-earliest) < txGatherSlack {
break
}
}
}
*timer = f.clock.AfterFunc(txFetchTimeout-time.Duration(now-earliest), func() {
trigger <- struct{}{}
})
}
// scheduleFetches starts a batch of retrievals for all available idle peers.
func (f *TxFetcher) scheduleFetches(timer *mclock.Timer, timeout chan struct{}, whitelist map[string]struct{}) {
// Gather the set of peers we want to retrieve from (default to all)
actives := whitelist
if actives == nil {
actives = make(map[string]struct{})
for peer := range f.announces {
actives[peer] = struct{}{}
}
}
if len(actives) == 0 {
return
}
// For each active peer, try to schedule some transaction fetches
idle := len(f.requests) == 0
f.forEachPeer(actives, func(peer string) {
if f.requests[peer] != nil {
return // continue in the for-each
}
if len(f.announces[peer]) == 0 {
return // continue in the for-each
}
var (
hashes = make([]common.Hash, 0, maxTxRetrievals)
bytes uint64
)
f.forEachAnnounce(f.announces[peer], func(hash common.Hash, meta *txMetadata) bool {
// If the transaction is already fetching, skip to the next one
if _, ok := f.fetching[hash]; ok {
return true
}
// Mark the hash as fetching and stash away possible alternates
f.fetching[hash] = peer
if _, ok := f.alternates[hash]; ok {
panic(fmt.Sprintf("alternate tracker already contains fetching item: %v", f.alternates[hash]))
}
f.alternates[hash] = f.announced[hash]
delete(f.announced, hash)
// Accumulate the hash and stop if the limit was reached
hashes = append(hashes, hash)
if len(hashes) >= maxTxRetrievals {
return false // break in the for-each
}
if meta != nil { // Only set eth/68 and upwards
bytes += uint64(meta.size)
if bytes >= maxTxRetrievalSize {
return false
}
}
return true // scheduled, try to add more
})
// If any hashes were allocated, request them from the peer
if len(hashes) > 0 {
f.requests[peer] = &txRequest{hashes: hashes, time: f.clock.Now()}
txRequestOutMeter.Mark(int64(len(hashes)))
go func(peer string, hashes []common.Hash) {
// Try to fetch the transactions, but in case of a request
// failure (e.g. peer disconnected), reschedule the hashes.
if err := f.fetchTxs(peer, hashes); err != nil {
txRequestFailMeter.Mark(int64(len(hashes)))
f.Drop(peer)
}
}(peer, hashes)
}
})
// If a new request was fired, schedule a timeout timer
if idle && len(f.requests) > 0 {
f.rescheduleTimeout(timer, timeout)
}
}
// forEachPeer does a range loop over a map of peers in production, but during
// testing it does a deterministic sorted random to allow reproducing issues.
func (f *TxFetcher) forEachPeer(peers map[string]struct{}, do func(peer string)) {
// If we're running production, use whatever Go's map gives us
if f.rand == nil {
for peer := range peers {
do(peer)
}
return
}
// We're running the test suite, make iteration deterministic
list := make([]string, 0, len(peers))
for peer := range peers {
list = append(list, peer)
}
sort.Strings(list)
rotateStrings(list, f.rand.Intn(len(list)))
for _, peer := range list {
do(peer)
}
}
// forEachAnnounce does a range loop over a map of announcements in production,
// but during testing it does a deterministic sorted random to allow reproducing