forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_15-02.cpp
212 lines (185 loc) · 5.69 KB
/
example_15-02.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Example 15-2. Learning a background model to identify foreground pixels
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cstdlib>
#include <fstream>
using namespace std;
// Global storage
//
// Float, 3-channel images
//
cv::Mat image;
cv::Mat IavgF, IdiffF, IprevF, IhiF, IlowF;
cv::Mat tmp, tmp2, mask;
// Float, 1-channel images
//
vector<cv::Mat> Igray(3);
vector<cv::Mat> Ilow(3);
vector<cv::Mat> Ihi(3);
// Byte, 1-channel image
//
cv::Mat Imaskt;
// Thresholds
//
float high_thresh = 20.0; //scaling the thesholds in backgroundDiff()
float low_thresh = 28.0;
// Counts number of images learned for averaging later
//
float Icount;
// I is just a sample image for allocation purposes
// (passed in for sizing)
//
void AllocateImages( const cv::Mat& I ) {
cv::Size sz = I.size();
IavgF = cv::Mat::zeros(sz, CV_32FC3 );
IdiffF = cv::Mat::zeros(sz, CV_32FC3 );
IprevF = cv::Mat::zeros(sz, CV_32FC3 );
IhiF = cv::Mat::zeros(sz, CV_32FC3 );
IlowF = cv::Mat::zeros(sz, CV_32FC3 );
Icount = 0.00001; // Protect against divide by zero
tmp = cv::Mat::zeros( sz, CV_32FC3 );
tmp2 = cv::Mat::zeros( sz, CV_32FC3 );
Imaskt = cv::Mat( sz, CV_32FC1 );
}
// Learn the background statistics for one more frame
// I is a color sample of the background, 3-channel, 8u
//
void accumulateBackground( cv::Mat& I ){
static int first = 1; // nb. Not thread safe
I.convertTo( tmp, CV_32F ); // convert to float
if( !first ){
IavgF += tmp;
cv::absdiff( tmp, IprevF, tmp2 );
IdiffF += tmp2;
Icount += 1.0;
}
first = 0;
IprevF = tmp;
}
void setHighThreshold( float scale ) {
IhiF = IavgF + (IdiffF * scale);
cv::split( IhiF, Ihi );
}
void setLowThreshold( float scale ) {
IlowF = IavgF - (IdiffF * scale);
cv::split( IlowF, Ilow );
}
void createModelsfromStats() {
IavgF *= (1.0/Icount);
IdiffF *= (1.0/Icount);
// Make sure diff is always something
//
IdiffF += cv::Scalar( 1.0, 1.0, 1.0 );
setHighThreshold( high_thresh);
setLowThreshold( low_thresh);
}
// Create a binary: 0,255 mask where 255 (red) means foreground pixel
// I Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
//
void backgroundDiff(
cv::Mat& I,
cv::Mat& Imask) {
I.convertTo( tmp, CV_32F ); // To float
cv::split( tmp, Igray );
// Channel 1
//
cv::inRange( Igray[0], Ilow[0], Ihi[0], Imask );
// Channel 2
//
cv::inRange( Igray[1], Ilow[1], Ihi[1], Imaskt );
Imask = cv::min( Imask, Imaskt );
// Channel 3
//
cv::inRange( Igray[2], Ilow[2], Ihi[2], Imaskt );
Imask = cv::min( Imask, Imaskt );
// Finally, invert the results
//
Imask = 255 - Imask;
}
///////////////////
void help(char** argv ) {
cout << "\n"
<< "Train a background model on the first <#frames to train on> frames of an incoming video, then run the model\n"
<< argv[0] <<" <#frames to train on> <avi_path/filename>\n"
<< "For example:\n"
<< argv[0] << " 50 ../tree.avi\n"
<< "'A' or 'a' to adjust thresholds, esc, 'q' or 'Q' to quit"
<< endl;
}
void showForgroundInRed( char** argv, const cv::Mat &img) {
cv::Mat rawImage;
cv::split( img, Igray );
Igray[2] = cv::max( mask, Igray[2] );
cv::merge( Igray, rawImage );
cv::imshow( argv[0], rawImage );
cv::imshow("Segmentation", mask);
}
void adjustThresholds(char** argv, cv::Mat &img) {
int key = 1;
while((key = cv::waitKey()) != 27 && key != 'Q' && key != 'q') // Esc or Q or q to exit
{
if(key == 'L') { low_thresh += 0.2;}
if(key == 'l') { low_thresh -= 0.2;}
if(key == 'H') { high_thresh += 0.2;}
if(key == 'h') { high_thresh -= 0.2;}
cout << "H or h, L or l, esq or q to quit; high_thresh = " << high_thresh << ", " << "low_thresh = " << low_thresh << endl;
setHighThreshold(high_thresh);
setLowThreshold(low_thresh);
backgroundDiff(img, mask);
showForgroundInRed(argv, img);
}
}
////////////////////////////////////////////////////////////////
int main( int argc, char** argv) {
cv::namedWindow( argv[0], cv::WINDOW_AUTOSIZE );
cv::VideoCapture cap;
if((argc < 3)|| !cap.open(argv[2])) {
cerr << "Couldn't run the program" << endl;
help(argv);
cap.open(0);
return -1;
}
int number_to_train_on = atoi( argv[1] );
// FIRST PROCESSING LOOP (TRAINING):
//
int frame_count = 0;
int key;
bool first_frame = true;
cout << "Total frames to train on = " << number_to_train_on << endl; //db
while(1) {
cout << "frame#: " << frame_count << endl;
cap >> image;
if( !image.data ) exit(1); // Something went wrong, abort
if(frame_count == 0) { AllocateImages(image);}
accumulateBackground( image );
cv::imshow( argv[0], image );
frame_count++;
if( (key = cv::waitKey(7)) == 27 || key == 'q' || key == 'Q' || frame_count >= number_to_train_on) break; //Allow early exit on space, esc, q
}
// We have accumulated our training, now create the models
//
cout << "Creating the background model" << endl;
createModelsfromStats();
cout << "Done! Hit any key to continue into single step. Hit 'a' or 'A' to adjust thresholds, esq, 'q' or 'Q' to quit\n" << endl;
// SECOND PROCESSING LOOP (TESTING):
//
cv::namedWindow("Segmentation", cv::WINDOW_AUTOSIZE ); //For the mask image
while((key = cv::waitKey()) != 27 || key == 'q' || key == 'Q' ) { // esc, 'q' or 'Q' to exit
cap >> image;
if( !image.data ) exit(0);
cout << frame_count++ << endl;
backgroundDiff( image, mask );
cv::imshow("Segmentation", mask);
// A simple visualization is to write to the red channel
//
showForgroundInRed( argv, image);
if(key == 'a') {
cout << "In adjust thresholds, 'H' or 'h' == high thresh up or down; 'L' or 'l' for low thresh up or down." << endl;
cout << " esq, 'q' or 'Q' to quit " << endl;
adjustThresholds(argv, image);
cout << "Done with adjustThreshold, back to frame stepping, esq, q or Q to quit." << endl;
}
}
exit(0);
}