-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetf-backtest.py
651 lines (576 loc) · 23.4 KB
/
etf-backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#!/usr/bin/env python
import datetime
import sqlite3
import sys
import ystockquote
from pprint import pprint
import yaml
from itertools import izip, islice, dropwhile
import numpy as np
from collections import defaultdict
from operator import itemgetter
from math import floor
import cProfile
START_DATE = '2005-09-30'
END_DATE = '2013-03-03'
def drop_source(c):
drop(c, *'period duration quote symbol'.split())
def drop_derived(c):
drop(c, *'return volatility ulcer_index parabolic_sar'.split())
c.execute('DROP VIEW IF EXISTS daily_return')
def drop_all(c):
drop_derived(c)
drop_source(c)
def create_source_tables(c):
drop_all(c)
print 'create source tables'
c.execute('''
CREATE TABLE symbol (
sym_id INTEGER PRIMARY KEY,
sym TEXT UNIQUE NOT NULL,
description TEXT NOT NULL
)''')
c.execute('''
CREATE TABLE quote (
quote_id INTEGER PRIMARY KEY,
sym_id INTEGER,
dt DATE NOT NULL,
open REAL NOT NULL,
high REAL NOT NULL,
low REAL NOT NULL,
close REAL NOT NULL,
volume REAL NOT NULL,
adjClose REAL NOT NULL,
FOREIGN KEY(sym_id) REFERENCES symbol(sym_id)
)''')
c.execute('CREATE UNIQUE INDEX quote_sym_dt ON quote (sym_id, dt)')
c.execute('CREATE UNIQUE INDEX quote_dt_sym ON quote(dt, sym_id)')
c.execute('''
CREATE TABLE duration (
duration_id INTEGER PRIMARY KEY,
unit TEXT NOT NULL,
unit_qty INTEGER NOT NULL,
days INTEGER UNIQUE NOT NULL
)''')
c.execute('CREATE UNIQUE INDEX duration_unit_qty ON duration (unit, unit_qty)')
truncate(c, 'duration')
durations = [ \
['day', 1, 1], \
['month', 1, 20], \
['quarter', 1, 63]]
c.executemany('INSERT INTO duration (unit, unit_qty, days) VALUES (?,?,?)', durations)
c.execute('''
CREATE TABLE period (
period_id INTEGER PRIMARY KEY,
duration_id INTEGER,
start_dt DATE NOT NULL,
end_dt DATE NOT NULL,
FOREIGN KEY(duration_id) REFERENCES duration(duration_id)
)''')
def create_derived_tables(c):
print 'create derived tables'
drop_derived(c)
c.execute('''
CREATE TABLE IF NOT EXISTS return (
return_id INTEGER PRIMARY KEY,
sym_id INTEGER,
period_id INTEGER,
return REAL NOT NULL,
FOREIGN KEY(sym_id) REFERENCES symbol(sym_id),
FOREIGN KEY(period_id) REFERENCES period(period_id)
)''')
c.execute('CREATE UNIQUE INDEX IF NOT EXISTS return_sym_period ON return (sym_id, period_id)')
c.execute('''
CREATE VIEW IF NOT EXISTS daily_return AS
SELECT r.sym_id AS sym_id, r.period_id AS period_id, return
FROM return r natural join period p natural join duration d
WHERE d.days = 1''')
c.execute('''
CREATE TABLE IF NOT EXISTS volatility (
volatility_id INTEGER PRIMARY KEY,
sym_id INTEGER,
period_id INTEGER,
volatility REAL NOT NULL,
FOREIGN KEY(sym_id) REFERENCES symbol(sym_id),
FOREIGN KEY(period_id) REFERENCES period(period_id)
)''')
c.execute('CREATE UNIQUE INDEX IF NOT EXISTS volatility_sym_period ON volatility (sym_id, period_id)')
c.execute('''
CREATE TABLE IF NOT EXISTS ulcer_index (
ulcer_index_id INTEGER PRIMARY KEY,
sym_id INTEGER,
period_id INTEGER,
ulcer_index REAL NOT NULL,
FOREIGN KEY(sym_id) REFERENCES symbol(sym_id),
FOREIGN KEY(period_id) REFERENCES period(period_id)
)''')
c.execute('CREATE UNIQUE INDEX IF NOT EXISTS ulcer_index_sym_period ON ulcer_index (sym_id, period_id)')
c.execute('''
CREATE TABLE IF NOT EXISTS parabolic_sar (
parabolic_sar_id INTEGER PRIMARY KEY,
sym_id INTEGER,
dt DATE NOT NULL,
long_short CHAR(1) NOT NULL,
parabolic_sar REAL NOT NULL,
FOREIGN KEY(sym_id) REFERENCES symbol(sym_id)
)''')
c.execute('CREATE UNIQUE INDEX IF NOT EXISTS parabolic_sar_sym_date ON parabolic_sar (sym_id, dt)')
c.execute('CREATE INDEX IF NOT EXISTS parabolic_sar_date ON parabolic_sar (dt)')
def insert_symbols(c, symbols_filename):
print 'load symbols'
truncate(c, 'symbol')
with open(symbols_filename) as sym_cfg:
sym_data = yaml.load(sym_cfg)
syms = sorted((sym, desc) for cat in sym_data.itervalues() for sym, desc in cat.iteritems())
c.executemany('INSERT INTO symbol (sym, description) VALUES (?,?)', syms)
def get_historical_prices(sym, start_date, end_date):
print 'get quotes:', sym, start_date, end_date
attempt = 0
while True:
attempt += 1
if attempt >= 3:
raise IOError, "Unable to get data for " + sym + "."
try:
ticks = ystockquote.get_historical_prices(sym, start_date, end_date)[1:]
except IOError as e:
continue
break
return [[sym, datetime.datetime.strptime(tick[0], '%Y-%m-%d').date()] + tick[1:] for tick in ticks]
def insert_quotes(c, start_date, end_date):
truncate(c, 'quote')
ksym_vid = dict_q(c, 'symbol', 'sym', 'sym_id')
for sym, sym_id in ksym_vid.iteritems():
ticks = get_historical_prices(sym, start_date, end_date)
c.executemany('''
INSERT OR REPLACE INTO quote (sym_id, dt, open, high, low, close, volume, adjClose) VALUES (
(SELECT sym_id FROM symbol WHERE sym = ?),?,?,?,?,?,?,?)''', ticks)
def compute_periods(c):
durations = c.execute('select duration_id, unit, unit_qty, days from duration').fetchall()
trading_days = col_query(c, 'select distinct dt from quote order by dt')
for duration_id, unit, unit_qty, days in durations:
if len(trading_days) < days:
raise ValueError, "not enough trading days to compute {} day periods".format(days)
print 'compute {} {} period: {} days'.format(unit_qty, unit, days)
for start_dt, end_dt in izip(trading_days, trading_days[days:]):
c.execute('INSERT INTO period (duration_id, start_dt, end_dt) VALUES (?,?,?)', (duration_id, start_dt, end_dt))
def compute_returns(c):
print 'compute returns'
c.execute('''
INSERT INTO return (sym_id, period_id, return)
SELECT q1.sym_id, p.period_id, (q2.adjClose - q1.adjClose) / q1.adjClose
FROM period p,
quote q1,
quote q2
WHERE
p.start_dt = q1.dt AND
p.end_dt = q2.dt AND
q1.sym_id = q2.sym_id''')
class VolatilityHelper:
def __init__(self):
pass
def returns(self, g):
'''returns a generator of returns. after consuming from this, you can see the last dt in self.last_dt'''
for dt, ret in g:
self.last_dt = dt
yield ret
def compute_volatility(c):
vh = VolatilityHelper()
for duration_id, unit, unit_qty, days in c.execute('select duration_id, unit, unit_qty, days from duration where days <> 1').fetchall():
periods = {end_dt: period_id for period_id, end_dt in c.execute('select period_id, end_dt from period where duration_id = ?', (duration_id,))}
for sym_id, sym in dict_q(c, 'symbol', 'sym_id', 'sym').iteritems():
print '{} day volatility for {}'.format(days, sym)
dt_dr = c.execute("""
SELECT p.end_dt, r.return from
return r, period p, duration d
WHERE r.sym_id = ? AND
r.period_id = p.period_id AND
p.duration_id = d.duration_id AND
d.days = 1""", (sym_id,)).fetchall()
for start, end in enumerate(range(days+1, len(dt_dr)+1)):
ret = np.fromiter(vh.returns(islice(dt_dr, start, end)), np.float)
vol = ret.std() * 254 ** 0.5
c.execute('INSERT INTO volatility (sym_id, period_id, volatility) VALUES (?,?,?)', (sym_id, periods[vh.last_dt], vol))
def compute_ulcer_index(c):
for duration_id, unit, unit_qty, days in c.execute('select duration_id, unit, unit_qty, days from duration where days <> 1').fetchall():
periods = {end_dt: period_id for period_id, end_dt in c.execute('select period_id, end_dt from period where duration_id = ?', (duration_id,))}
for sym_id, sym in c.execute('select sym_id, sym from symbol').fetchall():
print '{} day ulcer index for {}'.format(days, sym)
dt_quote = c.execute('select dt, adjClose from quote natural join symbol where sym = ? order by dt asc', (sym,)).fetchall()
for start, end in enumerate(range(days+1, len(dt_quote)+1)):
mx = None
ssq = 0
for dt, p in islice(dt_quote, start, end):
mx = max(mx, p)
ssq += (100 * (p - mx) / mx) ** 2
ui = (ssq / days) ** 0.5
c.execute('INSERT INTO ulcer_index (sym_id, period_id, ulcer_index) VALUES (?,?,?)', (sym_id, periods[dt], ui))
class HighLow:
def __init__(self, dt, high, low):
self.dt = dt
self.high = high
self.low = low
def __repr__(self):
return 'HighLow[{}, {}, {}]'.format(self.dt, self.high, self.low)
def is_hip(d1, d2, d3):
return d1.high < d2.high and d2.high > d3.high
def is_lop(d1, d2, d3):
return d1.low > d2.low and d2.low < d3.low
def sip(d1, d2, d3):
hip, lop = is_hip(d1, d2, d3), is_lop(d1, d2, d3)
if hip and lop:
return None, None
elif hip:
return d2, None
elif lop:
return None, d2
else:
return None, None
def compute_parabolic_sar(c):
for sym_id, sym in dict_q(c, 'symbol', 'sym_id', 'sym').iteritems():
print 'computing parabolic sar for', sym
dhl = [HighLow(*r) for r in c.execute('SELECT dt, high, low FROM quote WHERE quote.sym_id = ? ORDER BY dt ASC', (sym_id,)).fetchall()]
d1, d2, d3 = dhl[0:3]
# Find first high or low significant points to determine whether to initiate an initial short or long position.
for i, d4 in enumerate(islice(dhl, 3, None), start=1):
hip, lop = sip(d1, d2, d3)
d1, d2, d3 = d2, d3, d4
if hip or lop:
#print hip, lop
first_sigp_i = i
break
# For the first day of entry, SAR is the previous significant point. If long, the LOP, if short, the HIP.
if lop:
position = 'L'
max_p = d2.high
sar = lop.low
else:
position = 'S'
min_p = d2.low
sar = hip.high
af = 0.02
for d4 in islice(dhl, first_sigp_i + 3, None):
#print '{} | {:<5} | {:>6.2f} | {:>6.2f} | {:>6.2f} |'.format(d2.dt, position, d2.high, d2.low, sar),
c.execute('INSERT INTO parabolic_sar (sym_id, dt, long_short, parabolic_sar) VALUES (?,?,?,?)', (sym_id, d2.dt, position, sar))
if position == 'L':
if sar > d2.low:
# reversal
position = 'S'
af = 0.02
min_p = d2.low
diff = 0
af_diff = 0
#print '{:>6.2f} | {:>6.2f} | {:>1.2f} | {:>2.2f} |'.format(min_p, diff, af, af_diff)
sar = max_p
else:
if d2.high > max_p:
max_p = d2.high
new_ep = 1
else:
new_ep = 0
#print '{:>6.2f} |'.format(max_p),
diff = max_p - sar
af_diff = af * diff
#print '{:>6.2f} | {:>1.2f} | {:>2.2f} |'.format(diff, af, af_diff)
if new_ep:
af = min(af + 0.02, 0.2)
sar += af_diff
if sar > d1.low or sar > d2.low:
sar = min(d1.low, d2.low)
else:
if sar < d2.high:
# reversal
position = 'L'
af = 0.02
max_p = d2.high
diff = 0
af_diff = 0
#print '{:>6.2f} | {:>6.2f} | {:>1.2f} | {:>2.2f} |'.format(max_p, diff, af, af_diff)
sar = min_p
else:
if d2.low < min_p:
min_p = d2.low
new_ep = 1
else:
new_ep = 0
#print '{:>6.2f} |'.format(min_p),
diff = sar - min_p
af_diff = af * diff
#print '{:>6.2f} | {:>1.2f} | {:>2.2f} |'.format(diff, af, af_diff)
if new_ep:
af = min(af + 0.02, 0.2)
sar -= af_diff
if sar < d1.high or sar < d2.high:
sar = max(d1.high, d2.high)
d1, d2, d3 = d2, d3, d4
def return_vol_screen(c, syms, start_dt, end_dt, weights):
assert abs(sum(weights) - 1) < 0.001
params = '?,' * (len(syms) - 1) + '?'
raw_results = c.execute('''
SELECT s.sym, t0.return0, t1.return1, t2.volatility0, t3.volatility1
FROM
(SELECT r0.sym_id AS sym_id, r0.return AS return0 FROM
return r0
NATURAL JOIN period r0p
NATURAL JOIN duration r0d
WHERE r0d.unit = 'quarter' AND
r0p.end_dt = ?) AS t0
NATURAL JOIN
(SELECT r1.sym_id AS sym_id, r1.return AS return1 FROM
return r1
NATURAL JOIN period r1p
NATURAL JOIN duration r1d
WHERE r1d.unit = 'month' AND
r1p.end_dt = ?) AS t1
NATURAL JOIN
(SELECT v0.sym_id AS sym_id, v0.volatility AS volatility0 FROM
volatility v0
NATURAL JOIN period v0p
NATURAL JOIN duration v0d
WHERE v0d.unit = 'month' AND
v0p.end_dt = ?) AS t2
NATURAL JOIN
(SELECT v1.sym_id AS sym_id, v1.volatility AS volatility1 FROM
volatility v1
NATURAL JOIN period v1p
NATURAL JOIN duration v1d
WHERE v1d.unit = 'quarter' AND
v1p.end_dt = ?) AS t3
NATURAL JOIN symbol s
WHERE s.sym IN ({})'''.format(params), (end_dt,) * 4 + tuple(syms)).fetchall()
scores = defaultdict(float)
for i in range(1,5):
rev = i <= 2
sym_score = sorted(map(itemgetter(0,i), raw_results), key=itemgetter(1), reverse=rev)
for sym, score in sym_score:
scores[sym] += weights[i-1] * score
final_ranked = sorted(scores.items(), key=itemgetter(1))
ksym_vdata = dict((r[0], r[1:]) for r in raw_results)
return [(i, sym) + ksym_vdata[sym] for i, (sym, score) in enumerate(final_ranked)]
def return_vol_ranked_screen(c, syms, start_dt, end_dt, weights):
#assert abs(sum(weights) - 1) < 0.001
params = '?,' * (len(syms) - 1) + '?'
raw_results = c.execute('''
SELECT s.sym, t0.return0, t1.return1, t2.volatility0, t3.volatility1
FROM
(SELECT r0.sym_id AS sym_id, r0.return AS return0 FROM
return r0
NATURAL JOIN period r0p
NATURAL JOIN duration r0d
WHERE r0d.unit = 'quarter' AND
r0p.end_dt = ?) AS t0
NATURAL JOIN
(SELECT r1.sym_id AS sym_id, r1.return AS return1 FROM
return r1
NATURAL JOIN period r1p
NATURAL JOIN duration r1d
WHERE r1d.unit = 'month' AND
r1p.end_dt = ?) AS t1
NATURAL JOIN
(SELECT v0.sym_id AS sym_id, v0.volatility AS volatility0 FROM
volatility v0
NATURAL JOIN period v0p
NATURAL JOIN duration v0d
WHERE v0d.unit = 'month' AND
v0p.end_dt = ?) AS t2
NATURAL JOIN
(SELECT v1.sym_id AS sym_id, v1.volatility AS volatility1 FROM
volatility v1
NATURAL JOIN period v1p
NATURAL JOIN duration v1d
WHERE v1d.unit = 'quarter' AND
v1p.end_dt = ?) AS t3
NATURAL JOIN symbol s
WHERE s.sym IN ({})'''.format(params), (end_dt,) * 4 + tuple(syms)).fetchall()
scores = defaultdict(float)
for i in range(1,5):
rev = i <= 2
ranked = sorted(map(itemgetter(0,i), raw_results), key=itemgetter(1), reverse=rev)
for rank, (sym, score) in enumerate(ranked):
scores[sym] += weights[i-1] * rank
final_ranked = sorted(scores.items(), key=itemgetter(1))
ksym_vdata = dict((r[0], r[1:]) for r in raw_results)
return [(i, sym) + ksym_vdata[sym] for i, (sym, score) in enumerate(final_ranked)]
def sharpe_screen(c, syms, start_dt, end_dt, weights):
assert abs(sum(weights) - 1) < 0.001
params = '?,' * (len(syms) - 1) + '?'
raw_results = c.execute('''
SELECT s.sym, t0.return0, t1.return1,
t0.return0 / t2.volatility0, t1.return1 / t3.volatility1,
(t1.return1 / t3.volatility1) - (t0.return0 / 3 / t2.volatility0)
FROM
(SELECT r0.sym_id AS sym_id, r0.return AS return0 FROM
return r0
NATURAL JOIN period r0p
NATURAL JOIN duration r0d
WHERE r0d.unit = 'quarter' AND
r0p.end_dt = ?) AS t0
NATURAL JOIN
(SELECT r1.sym_id AS sym_id, r1.return AS return1 FROM
return r1
NATURAL JOIN period r1p
NATURAL JOIN duration r1d
WHERE r1d.unit = 'month' AND
r1p.end_dt = ?) AS t1
NATURAL JOIN
(SELECT v0.sym_id AS sym_id, v0.volatility AS volatility0 FROM
volatility v0
NATURAL JOIN period v0p
NATURAL JOIN duration v0d
WHERE v0d.unit = 'quarter' AND
v0p.end_dt = ?) AS t2
NATURAL JOIN
(SELECT v1.sym_id AS sym_id, v1.volatility AS volatility1 FROM
volatility v1
NATURAL JOIN period v1p
NATURAL JOIN duration v1d
WHERE v1d.unit = 'month' AND
v1p.end_dt = ?) AS t3
NATURAL JOIN symbol s
WHERE s.sym IN ({})'''.format(params), (end_dt,) * 4 + tuple(syms)).fetchall()
scores = defaultdict(float)
for i in range(1,6):
ranked = sorted(map(itemgetter(0,i), raw_results), key=itemgetter(1), reverse=True)
for rank, (sym, score) in enumerate(ranked):
scores[sym] += weights[i-1] * rank
final_ranked = sorted(scores.items(), key=itemgetter(1))
ksym_vdata = dict((r[0], r[1:]) for r in raw_results)
return [(i, sym) + ksym_vdata[sym] for i, (sym, score) in enumerate(final_ranked)]
def sharpe_screen2(c, syms, start_dt, end_dt, weights):
sym_to_returns = {sym: daily_returns(c, sym, start_dt, end_dt) for sym in syms}
sym_to_returns = {sym: returns for sym, returns in sym_to_returns.iteritems() if len(returns) > 1}
sym_to_sharpe = {sym: avg(returns) / stdev(returns) * 252 ** 0.5 for sym, returns in sym_to_returns.iteritems() if stdev(returns) != 0}
sorted_by_sharpe = sorted(sym_to_sharpe.items(), key=itemgetter(1), reverse=True)
return [(i, sym, sharpe) for i, (sym, sharpe) in enumerate(sorted_by_sharpe)]
def backtest(c, syms, screener, screener_args, start_cash=50000.00):
assert start_cash > 0
cash = start_cash
spy_cash = start_cash
returns = []
spy_returns = []
sym = None
last_d = scalar_query(c, "SELECT MIN(dt) FROM quote")
for d in dropwhile(lambda dt: dt <= last_d, month_ends(c)):
scr_res = screener(c, syms, last_d, d, screener_args)
if not scr_res:
continue
if sym:
# Sell the shares
exit_prc = price(c, sym, d)
exit_amt = shares * exit_prc
pnl = exit_amt - enter_amt
pnl_pct = (exit_prc - enter_prc) / enter_prc
returns.append(pnl_pct)
cash += exit_amt
# Sell SPY
exit_spy_prc = price(c, 'SPY', d)
exit_spy_amt = spy_shares * exit_spy_prc
spy_pnl = exit_spy_amt - enter_spy_amt
spy_pnl_pct = (exit_spy_prc - enter_spy_prc) / enter_spy_prc
spy_returns.append(spy_pnl_pct)
spy_cash += exit_spy_amt
# Print performance for period
print '{} | {} | {:>5} | {:>5} | {:>6.2f} | {:>6.2f} | {:>9.2f} | {:>7.2%} | {:>10.2f} | {:>9.2f} | {:>7.2%} | {:>10.2f}'.format( \
last_d, d, sym, shares, enter_prc, exit_prc, pnl, pnl_pct, cash, spy_pnl, spy_pnl_pct, spy_cash)
# Find the best
# print scr_res[0][1:]
sym = scr_res[0][1]
last_d = d
# Buy the best
enter_prc = price(c, sym, d)
shares = int(cash // enter_prc)
enter_amt = enter_prc * shares
cash -= enter_amt
# Buy SPY
enter_spy_prc = price(c, 'SPY', d)
spy_shares = int(spy_cash // enter_spy_prc)
enter_spy_amt = enter_spy_prc * spy_shares
spy_cash -= enter_spy_amt
# Sell the shares
exit_prc = price(c, sym, d)
exit_amt = shares * exit_prc
pnl = exit_amt - enter_amt
pnl_pct = (exit_prc / enter_prc) - 1
cash += exit_amt
# Sell SPY
exit_spy_prc = price(c, 'SPY', d)
exit_spy_amt = spy_shares * exit_spy_prc
spy_pnl = exit_spy_amt - enter_spy_amt
spy_pnl_pct = (exit_spy_prc / enter_spy_prc) - 1
spy_cash += exit_spy_amt
# Print next screen
print '\n'.join(map(str, screener(c, syms, last_d, d, screener_args)))
# Print total performance
tot_return = (cash - start_cash) / start_cash
spy_tot_return = (spy_cash - start_cash) / start_cash
tot_vol = stdev(returns) * 12 ** 0.5
spy_vol = stdev(spy_returns) * 12 ** 0.5
tot_sharpe = sum(returns) / len(returns) / tot_vol
spy_sharpe = sum(spy_returns) / len(returns) / spy_vol
for f, v in zip(('Return', 'SPY Return', 'Vol', 'SPY Vol'), (tot_return, spy_tot_return, tot_vol, spy_vol)):
print '{:>10}: {:6.2%}'.format(f, v)
for f, v in zip(('Sharpe Ratio', 'SPY Sharpe Ratio'), (tot_sharpe, spy_sharpe)):
print '{:>10}: {:6.2f}'.format(f, v)
def dict_q(c, table, key_col, value_col):
'''returns a q_col_i -> id_col_i dict'''
return dict(c.execute('select {}, {} from {}'.format(key_col, value_col, table)).fetchall())
def truncate(c, table):
c.execute('delete from {}'.format(table))
def drop(c, *tables):
print 'dropping', tables
for t in tables:
c.execute('drop table if exists ' + t)
def month_ends(c):
return col_query(c, "SELECT MAX(dt) AS end_dt FROM quote GROUP BY date(dt, 'start of month') ORDER BY end_dt")
def scalar_query(c, query, *args):
return col_query(c, query, *args)[0]
def col_query(c, query, *args):
return tuple(r[0] for r in c.execute(query, args).fetchall())
def price(c, sym, dt):
return scalar_query(c, "SELECT q.adjClose FROM quote q NATURAL JOIN symbol s WHERE s.sym = ? AND q.dt = ?", sym, dt)
def symbols(c):
return col_query(c, "SELECT s.sym FROM symbol s")
def daily_returns(c, sym, start_dt, end_dt):
return map(float, col_query(c, """
SELECT r.return
FROM return r,
period p,
duration d,
symbol s
WHERE r.sym_id = s.sym_id
AND r.period_id = p.period_id
AND p.duration_id = d.duration_id
AND d.days = 1
AND s.sym = ?
AND ? < p.end_dt AND p.end_dt <= ?""", sym, start_dt, end_dt))
def avg(s):
return sum(s) / len(s)
def stdev(s):
a = avg(s)
sdsq = sum([(i - a) ** 2 for i in s])
stdev = (sdsq / max(len(s) - 1, 1)) ** 0.5
return stdev
def main():
## syms = 'VTI VEU VWO BLV'.split()
## syms = 'RSP BLV EWA DBC VWO SHY'.split()
syms = 'DBC EFA SPY TLT VNQ BLV VWO BOND'.split()
with sqlite3.connect('prices.db', detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) as c:
create_source_tables(c)
insert_symbols(c, 'symbols.yml')
## syms = list(symbols(c))
## syms.remove('MS')
insert_quotes(c, START_DATE, END_DATE)
compute_periods(c)
create_derived_tables(c)
compute_returns(c)
compute_volatility(c)
compute_ulcer_index(c)
compute_parabolic_sar(c)
## print '\n'.join(map(str, return_vol_ranked_screen(c, syms, datetime.date(2012, 7, 17), (0.4, 0.3, 0, 0.3))))
## print '\n'.join(map(str, sharpe_screen(c, 'SPY SHY TIP TLT BLV QQQ GLD VNQ EWA VWO'.split(), datetime.date(2012, 7, 10), (0.5, 0.5))))
#cProfile.runctx('backtest(c, syms, return_vol_screen, (0.4, 0.3, 0, 0.3))', globals(), locals())
#backtest(c, syms, return_vol_ranked_screen, (.18, .72, 0, .1))
backtest(c, syms, sharpe_screen2, ())
print sharpe_screen2(c, syms, datetime.date(2013,2,1), datetime.date(2013,3,1), ())
#backtest(c, ('SPY',), sharpe_screen, (0.6, 0.4))
if __name__ == '__main__':
main()