forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory.rs
319 lines (282 loc) · 9.73 KB
/
memory.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Execution plan for reading in-memory batches of data
use std::any::Any;
use std::fmt;
use std::sync::Arc;
use std::task::{Context, Poll};
use super::expressions::PhysicalSortExpr;
use super::{
common, DisplayAs, DisplayFormatType, ExecutionPlan, Partitioning, RecordBatchStream,
SendableRecordBatchStream, Statistics,
};
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_err, project_schema, DataFusionError, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, LexOrdering};
use futures::Stream;
/// Execution plan for reading in-memory batches of data
pub struct MemoryExec {
/// The partitions to query
partitions: Vec<Vec<RecordBatch>>,
/// Schema representing the data before projection
schema: SchemaRef,
/// Schema representing the data after the optional projection is applied
projected_schema: SchemaRef,
/// Optional projection
projection: Option<Vec<usize>>,
// Sort information: one or more equivalent orderings
sort_information: Vec<LexOrdering>,
}
impl fmt::Debug for MemoryExec {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "partitions: [...]")?;
write!(f, "schema: {:?}", self.projected_schema)?;
write!(f, "projection: {:?}", self.projection)?;
if let Some(sort_info) = &self.sort_information.first() {
write!(f, ", output_ordering: {:?}", sort_info)?;
}
Ok(())
}
}
impl DisplayAs for MemoryExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
let partition_sizes: Vec<_> =
self.partitions.iter().map(|b| b.len()).collect();
let output_ordering = self
.sort_information
.first()
.map(|output_ordering| {
format!(
", output_ordering={}",
PhysicalSortExpr::format_list(output_ordering)
)
})
.unwrap_or_default();
write!(
f,
"MemoryExec: partitions={}, partition_sizes={partition_sizes:?}{output_ordering}",
partition_sizes.len(),
)
}
}
}
}
impl ExecutionPlan for MemoryExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
/// Get the schema for this execution plan
fn schema(&self) -> SchemaRef {
self.projected_schema.clone()
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
// this is a leaf node and has no children
vec![]
}
/// Get the output partitioning of this plan
fn output_partitioning(&self) -> Partitioning {
Partitioning::UnknownPartitioning(self.partitions.len())
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
self.sort_information
.first()
.map(|ordering| ordering.as_slice())
}
fn equivalence_properties(&self) -> EquivalenceProperties {
EquivalenceProperties::new_with_orderings(self.schema(), &self.sort_information)
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
// MemoryExec has no children
if children.is_empty() {
Ok(self)
} else {
internal_err!("Children cannot be replaced in {self:?}")
}
}
fn execute(
&self,
partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
Ok(Box::pin(MemoryStream::try_new(
self.partitions[partition].clone(),
self.projected_schema.clone(),
self.projection.clone(),
)?))
}
/// We recompute the statistics dynamically from the arrow metadata as it is pretty cheap to do so
fn statistics(&self) -> Result<Statistics> {
Ok(common::compute_record_batch_statistics(
&self.partitions,
&self.schema,
self.projection.clone(),
))
}
}
impl MemoryExec {
/// Create a new execution plan for reading in-memory record batches
/// The provided `schema` should not have the projection applied.
pub fn try_new(
partitions: &[Vec<RecordBatch>],
schema: SchemaRef,
projection: Option<Vec<usize>>,
) -> Result<Self> {
let projected_schema = project_schema(&schema, projection.as_ref())?;
Ok(Self {
partitions: partitions.to_vec(),
schema,
projected_schema,
projection,
sort_information: vec![],
})
}
pub fn partitions(&self) -> &[Vec<RecordBatch>] {
&self.partitions
}
pub fn projection(&self) -> &Option<Vec<usize>> {
&self.projection
}
/// A memory table can be ordered by multiple expressions simultaneously.
/// [`EquivalenceProperties`] keeps track of expressions that describe the
/// global ordering of the schema. These columns are not necessarily same; e.g.
/// ```text
/// ┌-------┐
/// | a | b |
/// |---|---|
/// | 1 | 9 |
/// | 2 | 8 |
/// | 3 | 7 |
/// | 5 | 5 |
/// └---┴---┘
/// ```
/// where both `a ASC` and `b DESC` can describe the table ordering. With
/// [`EquivalenceProperties`], we can keep track of these equivalences
/// and treat `a ASC` and `b DESC` as the same ordering requirement.
pub fn with_sort_information(mut self, sort_information: Vec<LexOrdering>) -> Self {
self.sort_information = sort_information;
self
}
pub fn original_schema(&self) -> SchemaRef {
self.schema.clone()
}
}
/// Iterator over batches
pub struct MemoryStream {
/// Vector of record batches
data: Vec<RecordBatch>,
/// Schema representing the data
schema: SchemaRef,
/// Optional projection for which columns to load
projection: Option<Vec<usize>>,
/// Index into the data
index: usize,
}
impl MemoryStream {
/// Create an iterator for a vector of record batches
pub fn try_new(
data: Vec<RecordBatch>,
schema: SchemaRef,
projection: Option<Vec<usize>>,
) -> Result<Self> {
Ok(Self {
data,
schema,
projection,
index: 0,
})
}
}
impl Stream for MemoryStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
_: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
Poll::Ready(if self.index < self.data.len() {
self.index += 1;
let batch = &self.data[self.index - 1];
// return just the columns requested
let batch = match self.projection.as_ref() {
Some(columns) => batch.project(columns)?,
None => batch.clone(),
};
Some(Ok(batch))
} else {
None
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.data.len(), Some(self.data.len()))
}
}
impl RecordBatchStream for MemoryStream {
/// Get the schema
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::memory::MemoryExec;
use crate::ExecutionPlan;
use arrow_schema::{DataType, Field, Schema, SortOptions};
use datafusion_physical_expr::expressions::col;
use datafusion_physical_expr::PhysicalSortExpr;
#[test]
fn test_memory_order_eq() -> datafusion_common::Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int64, false),
Field::new("b", DataType::Int64, false),
Field::new("c", DataType::Int64, false),
]));
let expected_output_order = vec![
PhysicalSortExpr {
expr: col("a", &schema)?,
options: SortOptions::default(),
},
PhysicalSortExpr {
expr: col("b", &schema)?,
options: SortOptions::default(),
},
];
let expected_order_eq = vec![PhysicalSortExpr {
expr: col("c", &schema)?,
options: SortOptions::default(),
}];
let sort_information =
vec![expected_output_order.clone(), expected_order_eq.clone()];
let mem_exec = MemoryExec::try_new(&[vec![]], schema, None)?
.with_sort_information(sort_information);
assert_eq!(mem_exec.output_ordering().unwrap(), expected_output_order);
let eq_properties = mem_exec.equivalence_properties();
assert!(eq_properties.oeq_class().contains(&expected_order_eq));
Ok(())
}
}