-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pixelsnail.py
49 lines (40 loc) · 1.56 KB
/
train_pixelsnail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import pytorch_lightning as pl
import pickle
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.nn.functional import one_hot
import lmdb
from pixelsnail import HierarchicalPixelSNAIL
from make_latent_dataset import Data
class LatentDataset(Dataset):
def __init__(self, path, n_embed=512):
self.env = lmdb.open(
path,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False
)
self.n_embed = n_embed
if not self.env:
raise IOError('Cannot open dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = str(index).encode('utf-8')
data = pickle.loads(txn.get(key))
top = one_hot(torch.from_numpy(data.top), self.n_embed).permute(2, 0, 1).type(torch.FloatTensor)
bot = one_hot(torch.from_numpy(data.bottom), self.n_embed).permute(2, 0, 1).type(torch.FloatTensor)
return top, bot
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dataset = LatentDataset("latent_code_data", n_embed=512)
loader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=12)
model = HierarchicalPixelSNAIL(512, 128, 10, 3, 5, 16, 128)
trainer = pl.Trainer(gpus=1)
trainer.fit(model, loader)