-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathevaluate.py
executable file
·262 lines (198 loc) · 9.84 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#
# MIT License
#
# Copyright (c) 2020 Matteo Poggi m.poggi@unibo.it
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import, division, print_function
import warnings
import os
import cv2
import numpy as np
import torch
import monodepth2
from monodepth2.options import MonodepthOptions
from monodepth2.layers import disp_to_depth
from monodepth2.utils import readlines
from extended_options import UncertaintyOptions
import progressbar
cv2.setNumThreads(0)
splits_dir = os.path.join(os.path.dirname(__file__), "monodepth2/splits")
# Real-world scale factor (see Monodepth2)
STEREO_SCALE_FACTOR = 5.4
uncertainty_metrics = ["abs_rel", "rmse", "a1"]
def compute_eigen_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
def compute_eigen_errors_v2(gt, pred, metrics=uncertainty_metrics, mask=None, reduce_mean=False):
"""Revised compute_eigen_errors function used for uncertainty metrics, with optional reduce_mean argument and (1-a1) computation
"""
results = []
if mask is not None:
pred = pred[mask]
gt = gt[mask]
if "abs_rel" in metrics:
abs_rel = (np.abs(gt - pred) / gt)
if reduce_mean:
abs_rel = abs_rel.mean()
results.append(abs_rel)
if "rmse" in metrics:
rmse = (gt - pred) ** 2
if reduce_mean:
rmse = np.sqrt(rmse.mean())
results.append(rmse)
if "a1" in metrics:
a1 = np.maximum((gt / pred), (pred / gt))
if reduce_mean:
# invert to get outliers
a1 = (a1 >= 1.25).mean()
results.append(a1)
return results
def compute_aucs(gt, pred, uncert, intervals=50):
"""Computation of auc metrics
"""
# results dictionaries
AUSE = {"abs_rel":0, "rmse":0, "a1":0}
AURG = {"abs_rel":0, "rmse":0, "a1":0}
# revert order (high uncertainty first)
uncert = -uncert
true_uncert = compute_eigen_errors_v2(gt,pred)
true_uncert = {"abs_rel":-true_uncert[0],"rmse":-true_uncert[1],"a1":-true_uncert[2]}
# prepare subsets for sampling and for area computation
quants = [100./intervals*t for t in range(0,intervals)]
plotx = [1./intervals*t for t in range(0,intervals+1)]
# get percentiles for sampling and corresponding subsets
thresholds = [np.percentile(uncert, q) for q in quants]
subs = [(uncert >= t) for t in thresholds]
# compute sparsification curves for each metric (add 0 for final sampling)
sparse_curve = {m:[compute_eigen_errors_v2(gt,pred,metrics=[m],mask=sub,reduce_mean=True)[0] for sub in subs]+[0] for m in uncertainty_metrics }
# human-readable call
'''
sparse_curve = {"rmse":[compute_eigen_errors_v2(gt,pred,metrics=["rmse"],mask=sub,reduce_mean=True)[0] for sub in subs]+[0],
"a1":[compute_eigen_errors_v2(gt,pred,metrics=["a1"],mask=sub,reduce_mean=True)[0] for sub in subs]+[0],
"abs_rel":[compute_eigen_errors_v2(gt,pred,metrics=["abs_rel"],mask=sub,reduce_mean=True)[0] for sub in subs]+[0]}
'''
# get percentiles for optimal sampling and corresponding subsets
opt_thresholds = {m:[np.percentile(true_uncert[m], q) for q in quants] for m in uncertainty_metrics}
opt_subs = {m:[(true_uncert[m] >= o) for o in opt_thresholds[m]] for m in uncertainty_metrics}
# compute sparsification curves for optimal sampling (add 0 for final sampling)
opt_curve = {m:[compute_eigen_errors_v2(gt,pred,metrics=[m],mask=opt_sub,reduce_mean=True)[0] for opt_sub in opt_subs[m]]+[0] for m in uncertainty_metrics}
# compute metrics for random sampling (equal for each sampling)
rnd_curve = {m:[compute_eigen_errors_v2(gt,pred,metrics=[m],mask=None,reduce_mean=True)[0] for t in range(intervals+1)] for m in uncertainty_metrics}
# compute error and gain metrics
for m in uncertainty_metrics:
# error: subtract from method sparsification (first term) the oracle sparsification (second term)
AUSE[m] = np.trapz(sparse_curve[m], x=plotx) - np.trapz(opt_curve[m], x=plotx)
# gain: subtract from random sparsification (first term) the method sparsification (second term)
AURG[m] = rnd_curve[m][0] - np.trapz(sparse_curve[m], x=plotx)
# returns a dictionary with AUSE and AURG for each metric
return {m:[AUSE[m], AURG[m]] for m in uncertainty_metrics}
def evaluate(opt):
"""Evaluates a pretrained model using a specified test set
"""
MIN_DEPTH = 1e-3
MAX_DEPTH = opt.max_depth
assert sum((opt.eval_mono, opt.eval_stereo)) == 1, "Please choose mono or stereo evaluation by setting either --eval_mono or --eval_stereo"
gt_path = os.path.join(splits_dir, opt.eval_split, "gt_depths.npz")
gt_depths = np.load(gt_path, fix_imports=True, encoding='latin1', allow_pickle=True)["data"]
print("-> Loading 16 bit predictions from {}".format(opt.ext_disp_to_eval))
pred_disps = []
pred_uncerts = []
for i in range(len(gt_depths)):
src = cv2.imread(opt.ext_disp_to_eval+'/disp/%06d_10.png'%i,-1) / 256. / (0.58*gt_depths[i].shape[1]) * 10
pred_disps.append(src)
if opt.eval_uncert:
uncert = cv2.imread(opt.ext_disp_to_eval+'/uncert/%06d_10.png'%i,-1) / 256.
pred_uncerts.append(uncert)
pred_disps = np.array(pred_disps)
print("-> Evaluating")
if opt.eval_stereo:
print(" Stereo evaluation - "
"disabling median scaling, scaling by {}".format(STEREO_SCALE_FACTOR))
opt.disable_median_scaling = True
opt.pred_depth_scale_factor = STEREO_SCALE_FACTOR
else:
print(" Mono evaluation - using median scaling")
errors = []
# dictionary with accumulators for each metric
aucs = {"abs_rel":[], "rmse":[], "a1":[]}
bar = progressbar.ProgressBar(max_value=len(gt_depths))
for i in range(len(gt_depths)):
gt_depth = gt_depths[i]
gt_height, gt_width = gt_depth.shape[:2]
bar.update(i)
pred_disp = pred_disps[i]
pred_disp = cv2.resize(pred_disp, (gt_width, gt_height))
pred_depth = 1 / pred_disp
if opt.eval_uncert:
pred_uncert = pred_uncerts[i]
pred_uncert = cv2.resize(pred_uncert, (gt_width, gt_height))
if opt.eval_split == "eigen":
# traditional eigen crop
mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH)
crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height,
0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32)
crop_mask = np.zeros(mask.shape)
crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
mask = np.logical_and(mask, crop_mask)
else:
# just mask out invalid depths
mask = (gt_depth > 0)
# apply masks
pred_depth = pred_depth[mask]
gt_depth = gt_depth[mask]
if opt.eval_uncert:
pred_uncert = pred_uncert[mask]
# apply scale factor and depth cap
pred_depth *= opt.pred_depth_scale_factor
pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH
pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH
# get Eigen's metrics
errors.append(compute_eigen_errors(gt_depth, pred_depth))
if opt.eval_uncert:
# get uncertainty metrics (AUSE and AURG)
scores = compute_aucs(gt_depth, pred_depth, pred_uncert)
# append AUSE and AURG to accumulators
[aucs[m].append(scores[m]) for m in uncertainty_metrics ]
# compute mean depth metrics and print
mean_errors = np.array(errors).mean(0)
print("\n " + ("{:>8} | " * 7).format("abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 7).format(*mean_errors.tolist()) + "\\\\")
if opt.eval_uncert:
# compute mean uncertainty metrics and print
for m in uncertainty_metrics:
aucs[m] = np.array(aucs[m]).mean(0)
print("\n " + ("{:>8} | " * 6).format("abs_rel", "", "rmse", "", "a1", ""))
print(" " + ("{:>8} | " * 6).format("AUSE", "AURG", "AUSE", "AURG", "AUSE", "AURG"))
print(("&{:8.3f} " * 6).format(*aucs["abs_rel"].tolist()+aucs["rmse"].tolist()+aucs["a1"].tolist()) + "\\\\")
# see you next time!
print("\n-> Done!")
if __name__ == "__main__":
warnings.simplefilter("ignore", UserWarning)
options = UncertaintyOptions()
evaluate(options.parse())