添加一个新的设备需要以下3个步骤:
假设新设备的名称为TNEW
, 以下将以这个设备名称进行演示。
- 修改根目录
CMakeList.txt
#select the plantform to build
anakin_option(USE_GPU_PLACE "Select the build mode for GPU place." NO)
anakin_option(USE_X86_PLACE "Select the build mode for X86 place." NO)
anakin_option(USE_ARM_PLACE "Select the build mode for ARM place." NO)
anakin_option(USE_TNEW_PLACE "Select the build mode for ARM place." YES)
- 修改
saber/CMakeList.txt
根据新增设备的目录完善saber
目录下的CMakeList.txt
。
if(USE_TNEW_PLACE)
anakin_fetch_files_with_suffix(${ANAKIN_SABER}/core/impl/tnew "cpp" ANAKIN_SABER_BASE_SRC)
anakin_fetch_files_with_suffix(${ANAKIN_SABER}/funcs/impl/tnew "cpp" ANAKIN_SABER_BASE_SRC)
endif()
- 修改
test/CMakeList.txt
新增设备的单测文件放在test/saber/tnew
目录下,修改test
目录下的CMakeList.txt
。
if(USE_TNEW_PLACE)
anakin_fetch_files_with_suffix(${ANAKIN_UNIT_TEST}/saber/tnew "cpp" ANAKIN_TEST_CASE_SRC)
endif()
- 修改
cmake/anakin_config.h.in
// plantform to use
#cmakedefine USE_GPU_PLACE
#cmakedefine USE_X86_PLACE
#cmakedefine USE_ARM_PLACE
#cmakedefine USE_TNEW_PLACE
- 其他依赖和编译选项
修改cmake
目录下的compiler_options.cmake
和find_modules.cmake
saber
是Anakin
的基础计算库,对外提供设备无关的统一的API,设备相关的实现都会封装到TargetWrapper
中。
enum TargetTypeEnum {
eINVALID = -1,
eNV = 1,
eAMD = 2,
eARM = 3,
eX86 = 4,
eNVHX86 = 5,
eTNEW = 6
};
typedef TargetType<eNV> NV;
typedef TargetType<eARM> ARM;
typedef TargetType<eAMD> AMD;
typedef TargetType<eX86> X86;
typedef TargetType<eTNEW> TNEW;
- 在
target_traits.h
中添加新设备
- 增加设备类型
struct __cuda_device{};
struct __arm_device{};
struct __amd_device{};
struct __x86_device{};
struct __tnew_device{};
TargetTypeTraits
模板具体化
template <>
struct TargetTypeTraits<TNEW> {
typedef __xxx_target target_category;//根据实际设备是host端还是device端进行选择
typedef __tnew_device target_type;
};
- 在
data_traits.h
中特化DataTrait
模板类
如果设备需要特殊的数据类型,则特化出设备的DataTrait
类的实现,例如opencl数据类型的实现如下:
#ifdef USE_OPENCL
struct ClMem{
ClMem(){
dmem = nullptr;
offset = 0;
}
ClMem(cl_mem* mem_in, int offset_in = 0) {
dmem = mem_in;
offset = offset_in;
}
ClMem(ClMem& right) {
dmem = right.dmem;
offset = right.offset;
}
ClMem& operator=(ClMem& right) {
this->dmem = right.dmem;
this->offset = right.offset;
return *this;
}
ClMem& operator+(int offset_in) {
this->offset += offset_in;
return *this;
}
int offset{0};
cl_mem* dmem;
};
template <>
struct DataTrait<AMD, AK_FLOAT> {
typedef ClMem Dtype;
typedef float dtype;
};
template <>
struct DataTrait<AMD, AK_DOUBLE> {
typedef ClMem Dtype;
typedef double dtype;
};
template <>
struct DataTrait<AMD, AK_INT8> {
typedef ClMem Dtype;
typedef char dtype;
};
#endif //use_opencl
- 在
target_wrapper.h
中特化TargetWrapper
模板类
特化TargetWrapper
模板类,在target_wrapper.h
中声明函数,具体如下:
template <>
struct TargetWrapper<TNEW, __xxx_target> { //根据TNEW的具体类型修改__xxx_target,__host_target或者__device_target
typedef xxx_event event_t; //根据设备实现xxx_event
typedef xxx_stream stream_t; //根据设备实现xxx_stream
static void get_device_count(int& count);
static void set_device(int id);
//We should add strategy to avoid malloc directly
static void mem_alloc(void** ptr, size_t n);
static void mem_free(void* ptr);
static void mem_set(void* ptr, int value, size_t n);
static void create_event(event_t& event, bool flag = false);
static void create_stream(stream_t& stream);
static void create_stream_with_flag(stream_t& stream, unsigned int flag);
static void create_stream_with_priority(stream_t& stream, unsigned int flag, int priority);
static void destroy_stream(stream_t& stream);
static void destroy_event(event_t& event);
static void record_event(event_t& event, stream_t stream);
static void query_event(event_t& event);
static void sync_event(event_t& event);
static void sync_stream(event_t& event, stream_t& stream);
static void sync_memcpy(void* dst, int dst_id, const void* src, int src_id, \
size_t count, __DtoD);
static void async_memcpy(void* dst, int dst_id, const void* src, int src_id, \
size_t count, stream_t& stream, __DtoD);
static void sync_memcpy(void* dst, int dst_id, const void* src, int src_id, \
size_t count, __HtoD);
static void async_memcpy(void* dst, int dst_id, const void* src, int src_id, \
size_t count, stream_t& stream, __HtoD);
static void sync_memcpy(void* dst, int dst_id, const void* src, int src_id, \
size_t count, __DtoH);
static void async_memcpy(void* dst, int dst_id, const void* src, int src_id, \
size_t count, stream_t& stream, __DtoH);
static void sync_memcpy_p2p(void* dst, int dst_dev, const void* src, \
int src_dev, size_t count);
static void async_memcpy_p2p(void* dst, int dst_dev, const void* src, \
int src_dev, size_t count, stream_t& stream);
static int get_device_id();
};
- 在
impl/
目录下添加设备目录和实现
在saber/core/impl
目录下添加设备目录tnew
。
- 实现
TargetWrapper<TNEW, __xxx_target>
结构体中各函数的定义。
如果TargetWrapper<TNEW, __xxx_target>
的实现与默认的模板类一致,则不用特化出该类。
typedef TargetWrapper<TNEW, __xxx_target> TNEW_API;
void TNEW_API::get_device_count(int &count) {
// add implementation
}
void TNEW_API::set_device(int id){
// add implementation
}
void TNEW_API::mem_alloc(void** ptr, size_t n){
// add implementation
}
void TNEW_API::mem_free(void* ptr){
if(ptr != nullptr){
// add implementation
}
}
...
- 特化实现
device.h
中的Device<TNEW>
template <>
void Device<TNEW>::create_stream() {
// add implementation
}
template <>
void Device<TNEW>::get_info() {
// add implementation
}
net.cpp
中添加实例化
#ifdef USE_TNEW_PLACE
template class Net<TNEW, AK_FLOAT, Precision::FP32, OpRunType::ASYNC>;
template class Net<TNEW, AK_FLOAT, Precision::FP32, OpRunType::SYNC>;
#endif
operator_func.cpp
中添加实例化
#ifdef USE_TNEW_PLACE
template class OperatorFunc<TNEW, AK_FLOAT, Precision::FP32>;
#endif
worker.cpp
中添加实例化
#ifdef USE_TNEW_PLACE
template class Worker<TNEW, AK_FLOAT, Precision::FP32, OpRunType::ASYNC>;
template class Worker<TNEW, AK_FLOAT, Precision::FP32, OpRunType::SYNC>;
#endif
operator_attr.cpp
中添加实例化
template
OpAttrWarpper& OpAttrWarpper::__alias__<TNEW, AK_FLOAT, Precision::FP32>(const std::string& op_name);
template
OpAttrWarpper& OpAttrWarpper::__alias__<TNEW, AK_FLOAT, Precision::FP16>(const std::string& op_name);
template
OpAttrWarpper& OpAttrWarpper::__alias__<TNEW, AK_FLOAT, Precision::INT8>(const std::string& op_name);
parameter.h
中添加设备的实现
#ifdef USE_TNEW_PLACE
template<typename Dtype>
class PBlock<Dtype, TNEW> {
public:
typedef Tensor4d<TNEW, DataTypeRecover<Dtype>::type> type;
PBlock() {
_inner_tensor = std::make_shared<type>();
}
...
}
#endif //TNEW
type_traits_extend.h
中添加设备的实现
template<>
struct target_host<saber::TNEW> {
typedef saber::X86 type; //根据TNEW选择正确的host type
};
graph.cpp
中添加实例化
#ifdef USE_TNEW_PLACE
template class Graph<TNEW, AK_FLOAT, Precision::FP32>;
template class Graph<TNEW, AK_FLOAT, Precision::FP16>;
template class Graph<TNEW, AK_FLOAT, Precision::INT8>;
#endif
parser.cpp
中添加实例化
#ifdef USE_TNEW_PLACE
template
Status load<TNEW, AK_FLOAT, Precision::FP32>(graph::Graph<TNEW, AK_FLOAT, Precision::FP32>* graph,
const char* model_path);
template
Status load<TNEW, AK_FLOAT, Precision::FP16>(graph::Graph<TNEW, AK_FLOAT, Precision::FP16>* graph,
const char* model_path);
template
Status load<TNEW, AK_FLOAT, Precision::INT8>(graph::Graph<TNEW, AK_FLOAT, Precision::INT8>* graph,
const char* model_path);
template
Status save<TNEW, AK_FLOAT, Precision::FP32>(graph::Graph<TNEW, AK_FLOAT, Precision::FP32>* graph,
std::string& model_path);
template
Status save<TNEW, AK_FLOAT, Precision::FP16>(graph::Graph<TNEW, AK_FLOAT, Precision::FP16>* graph,
std::string& model_path);
template
Status save<TNEW, AK_FLOAT, Precision::INT8>(graph::Graph<TNEW, AK_FLOAT, Precision::INT8>* graph,
std::string& model_path);
template
Status load<TNEW, AK_FLOAT, Precision::FP32>(graph::Graph<TNEW, AK_FLOAT, Precision::FP32>* graph,
std::string& model_path);
template
Status load<TNEW, AK_FLOAT, Precision::FP16>(graph::Graph<TNEW, AK_FLOAT, Precision::FP16>* graph,
std::string& model_path);
template
Status load<TNEW, AK_FLOAT, Precision::INT8>(graph::Graph<TNEW, AK_FLOAT, Precision::INT8>* graph,
std::string& model_path);
template
Status save<TNEW, AK_FLOAT, Precision::FP32>(graph::Graph<TNEW, AK_FLOAT, Precision::FP32>* graph,
const char* model_path);
template
Status save<TNEW, AK_FLOAT, Precision::FP16>(graph::Graph<TNEW, AK_FLOAT, Precision::FP16>* graph,
const char* model_path);
template
Status save<TNEW, AK_FLOAT, Precision::INT8>(graph::Graph<TNEW, AK_FLOAT, Precision::INT8>* graph,
const char* model_path);
#endif
model_io.cpp
中添加实例化
#ifdef USE_TNEW_PLACE
template class NodeIO<TNEW, AK_FLOAT, Precision::FP32>;
template class NodeIO<TNEW, AK_FLOAT, Precision::FP16>;
template class NodeIO<TNEW, AK_FLOAT, Precision::INT8>;
#endif
为framework/operators
目录下所有op添加实例化或具体化
以activation.cpp
为例,实例化如下:
#ifdef USE_TNEW_PLACE
INSTANCE_ACTIVATION(TNEW, AK_FLOAT, Precision::FP32);
INSTANCE_ACTIVATION(TNEW, AK_FLOAT, Precision::FP16);
INSTANCE_ACTIVATION(TNEW, AK_FLOAT, Precision::INT8);
template class ActivationHelper<TNEW, AK_FLOAT, Precision::FP32>;
ANAKIN_REGISTER_OP_HELPER(Activation, ActivationHelper, TNEW, AK_FLOAT, Precision::FP32);
#endif
如果TNEW设备函数的实现与现有模板实现不一致,可以特化实现如下(以init()为例):
#ifdef USE_TNEW_PLACE
INSTANCE_ACTIVATION(TNEW, AK_FLOAT, Precision::FP32);
INSTANCE_ACTIVATION(TNEW, AK_FLOAT, Precision::FP16);
INSTANCE_ACTIVATION(TNEW, AK_FLOAT, Precision::INT8);
template <>
Status ActivationHelper<TNEW, AK_FLOAT, Precision::FP32>::Init(OpContext<TNEW> &ctx,\
const std::vector<Tensor4dPtr<TNEW, AK_FLOAT> >& ins, \
std::vector<Tensor4dPtr<TNEW, AK_FLOAT> >& outs) {
SABER_CHECK(_funcs_activation.init(ins, outs, _param_activation, SPECIFY, SABER_IMPL, ctx)); //在这里选择实现方式
return Status::OK();
}
ANAKIN_REGISTER_OP_HELPER(Activation, ActivationHelper, TNEW, AK_FLOAT, Precision::FP32);
#endif
在ANAKIN_REGISTER_OP(Activation)
中添加TNEW的注册
#ifdef USE_TNEW_PLACE
.__alias__<TNEW, AK_FLOAT, Precision::FP32>("activation")
#endif
不要修改Tensor
/Buffer
/Env
/Context
这些类函数的接口和实现