-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmodels.py
271 lines (218 loc) · 10.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import tensorflow as tf
import numpy as np
from tensorflow.contrib.slim.nets import resnet_v2 as slim_resnet
# from tensorflow.contrib.slim.nets.resnet_v2 import resnet_v2_block, resnet_v2, resnet_arg_scope
# import tensorflow.contrib.slim.nets as slim_resnet
class BasicNN:
"""
An abstract class for a Neural Network model.
"""
def __init__(self, hps):
self.hps = hps
self.activation = hps.activation
self.f, self.grads_f_x, self.hidden1 = None, None, None
self.weights_layer, self.biases_layer, self.bn_layer = 0, 0, 0
def dropout(self, x):
x = tf.layers.dropout(x, 0.5, training=self.flag_train)
return x
def batch_norm(self, x):
self.bn_layer += 1
x = tf.layers.batch_normalization(x, momentum=0.99, epsilon=1e-5, center=True, scale=True,
training=self.flag_train)
# x = tf.contrib.layers.batch_norm(x, decay=0.99, epsilon=1e-5, center=True, scale=True,
# is_training=self.flag_train, updates_collections=None)
return x
def fc_layer(self, name, x, n_out, bn=False, last=False):
"""FullyConnected layer for final output."""
with tf.variable_scope(name):
if len(x.shape) == 4:
n_in = int(x.shape[1]) * int(x.shape[2]) * int(x.shape[3])
x = tf.reshape(x, [-1, n_in])
else:
n_in = int(x.shape[1])
init = tf.random_normal_initializer(stddev=np.sqrt(2.0 / n_in))
w = tf.get_variable('weights', [n_in, n_out], initializer=init)
b = tf.get_variable('biases', [n_out], initializer=tf.constant_initializer(0.0))
x = tf.nn.xw_plus_b(x, w, b)
x = self.batch_norm(x) if bn else x
x = self.activation(x) if not last else x
return x
def get_loss(self, logits, labels):
return tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)) #sum instead of mean since later we average the loss over the full batch including noise.
class CNN(BasicNN):
def __init__(self, hps):
super().__init__(hps)
@staticmethod
def _stride_arr(stride):
"""Map a stride scalar to the stride array for tf.nn.conv2d."""
return [1, stride, stride, 1]
def weight_variable(self, shape):
""" Creates a weight variable of a given shape *for conv layer*
First `hps.n_random_layers` will be initialized randomly but not trained.
"""
self.weights_layer += 1 # just for counting purposes
n_in = int(shape[0]) * int(shape[1]) * int(shape[2])
# Mainstream init
init = tf.truncated_normal_initializer(stddev=np.sqrt(2.0 / n_in))
weights = tf.get_variable('weights', shape, tf.float32, initializer=init, trainable=True)
return weights
def bias_variable(self, shape):
""" Creates a bias variable of a given shape.
First `hps.n_random_layers` will be initialized randomly but not trained.
"""
init = tf.constant_initializer(0.0)
return tf.get_variable('biases', shape, initializer=init)
@staticmethod
def max_pool(x, size, stride):
return tf.nn.max_pool(x, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME')
@staticmethod
def avg_pool(x, size, stride):
return tf.nn.avg_pool(x, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME')
def _conv(self, name, x, filter_size, in_filters, out_filters, stride, biases=False):
"""Convolution."""
with tf.variable_scope(name):
kernel = self.weight_variable([filter_size, filter_size, in_filters, out_filters])
x = tf.nn.conv2d(x, kernel, [1, stride, stride, 1], padding='SAME')
if biases:
x += self.bias_variable([out_filters])
return x
@staticmethod
def _global_avg_pool(x):
assert x.get_shape().ndims == 4
return tf.reduce_mean(x, [1, 2])
def conv_layer(self, name, x, size, n_out, stride, bn=False, biases=True):
with tf.variable_scope(name):
n_in = x.shape[-1]
x = self._conv(name, x, size, n_in, n_out, stride, biases=biases)
x = self.batch_norm(x) if bn else x
x = self.activation(x)
return x
class ResNet(CNN):
def __init__(self, hps):
"""ResNet constructor.
ResNet model. Based on Ritchie Ng ResNet model: https://github.com/ritchieng/resnet-tensorflow
Related papers:
https://arxiv.org/pdf/1512.03385v1.pdf - main paper
https://arxiv.org/pdf/1603.05027v2.pdf - Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1605.07146v1.pdf - wide residual networks
Args:
flag_train: tf.bool() which is True when we run the comp. graph for training, False for testing
"""
super().__init__(hps)
self.use_bottleneck = False
if self.use_bottleneck:
self.res_func = self._bottleneck_residual
else:
self.res_func = self._residual
def _residual(self, x, in_filter, out_filter, stride, activate_before_residual=False):
"""Residual unit with 2 sub layers."""
if activate_before_residual:
with tf.variable_scope('shared_activation'):
x = self.batch_norm(x)
x = self.activation(x)
orig_x = x
else:
with tf.variable_scope('residual_only_activation'):
orig_x = x
x = self.batch_norm(x)
x = self.activation(x)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
with tf.variable_scope('sub2'):
x = self.batch_norm(x)
x = self.activation(x)
x = self._conv('conv2', x, 3, out_filter, out_filter, 1)
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = tf.nn.avg_pool(orig_x, self._stride_arr(stride), self._stride_arr(stride), 'VALID')
orig_x = tf.pad(orig_x, [[0, 0], [0, 0], [0, 0],
[(out_filter - in_filter) // 2, (out_filter - in_filter) // 2]])
x += orig_x
tf.logging.info('image after unit %s', x.get_shape())
return x
def _bottleneck_residual(self, x, in_filter, out_filter, stride,
activate_before_residual=False):
"""Bottleneck resisual unit with 3 sub layers."""
if activate_before_residual:
with tf.variable_scope('common_bn_relu'):
x = self.batch_norm(x)
x = self.activation(x)
orig_x = x
else:
with tf.variable_scope('residual_bn_relu'):
orig_x = x
x = self.batch_norm(x)
x = self.activation(x)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 1, in_filter, out_filter / 4, stride)
with tf.variable_scope('sub2'):
x = self.batch_norm(x)
x = self.activation(x)
x = self._conv('conv2', x, 3, out_filter / 4, out_filter / 4, [1, 1, 1, 1])
with tf.variable_scope('sub3'):
x = self.batch_norm(x)
x = self.activation(x)
x = self._conv('conv3', x, 1, out_filter / 4, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride)
x += orig_x
tf.logging.info('image after unit %s', x.get_shape())
return x
class ResNetSmall(ResNet):
def __init__(self, hps):
super().__init__(hps)
self.n_filters = [16, 16, 32, 64]
# self.n_filters = [2, 2, 4, 8]
# self.n_filters = [64, 64, 128, 256]
def get_logits(self, x, flag_train):
self.flag_train = flag_train
res_func = self.res_func
strides = [1, 1, 2, 2]
activate_before_residual = [True, False, False]
n_resid_units = [0, 3, 3, 3]
with tf.variable_scope('block_init'):
x = self._conv('conv', x, 3, int(x.shape[-1]), self.n_filters[0], strides[0])
for i in range(1, len(n_resid_units)):
with tf.variable_scope('block_' + str(i) + '_0'):
x = res_func(x, self.n_filters[i - 1], self.n_filters[i], strides[i], activate_before_residual[0])
for j in range(1, n_resid_units[i]):
with tf.variable_scope('block_' + str(i) + '_' + str(j)):
x = res_func(x, self.n_filters[i], self.n_filters[i], 1, False)
with tf.variable_scope('unit_last'):
x = self.batch_norm(x)
x = self.activation(x)
x = self._global_avg_pool(x)
with tf.variable_scope('logit'):
f = self.fc_layer('fc', x, self.hps.n_classes, last=True)
return f
def he_init(shape):
""" He init for conv or fc layers."""
if len(shape) == 4:
n_in, n_out = shape[0] * shape[1] * shape[2], shape[0] * shape[1] * shape[3]
else:
n_in, n_out = shape[0], shape[1]
return tf.truncated_normal(shape, stddev=np.sqrt(2.0 / n_in))
class LeNet(CNN):
def __init__(self, hps):
super().__init__(hps)
self.strides = [1, 1]
self.n_filters = [32, 64]
self.n_fc = [1024]
def get_logits(self, x, flag_train):
"""
Build the core model within the graph.
x: Batches of images. [batch_size, image_size, image_size, 3]
"""
self.flag_train = flag_train
bn = False
x = self.conv_layer('conv1', x, 5, self.n_filters[0], self.strides[0], bn=bn, biases=not bn)
x = self.max_pool(x, 2, 2)
x = self.conv_layer('conv2', x, 5, self.n_filters[1], self.strides[1], bn=bn, biases=not bn)
x = self.max_pool(x, 2, 2)
x = self.fc_layer('fc1', x, self.n_fc[0])
x = self.fc_layer('fc2', x, self.hps.n_classes, last=True)
return x
models_dict = {'lenet': LeNet,
'resnet_small': ResNetSmall,
}