-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathutils.py
134 lines (103 loc) · 4.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Various helping functions
"""
import pickle
import tensorflow as tf
import os
import scipy.io
import numpy as np
import subprocess
import glob
class FieldObj:
pass
def extract_hps(w_path):
_, _, _, _, _, exp_name, _, dataset, hps = w_path.split('/')
nn_type = hps.split('nn_type=')[1].split(' ')[0]
nn_type = 'fc1' if nn_type == 'mnist1' else nn_type # correction for old runs
lmbd = float(hps.split('lmbd=')[1].split(' ')[0])
gamma_rb = float(hps.split('gamma_rb=')[1].split(' ')[0])
gamma_db = float(hps.split('gamma_db=')[1].split(' ')[0])
return exp_name, dataset, hps, nn_type, lmbd, gamma_rb, gamma_db
def get_max_epoch_in_tb(exp_name, dataset, hps_to_select):
tb_pattern = 'exps/{}/tb/{}/{}'.format(exp_name, dataset, hps_to_select)
path_tb_model = sorted(glob.glob(tb_pattern))[-1] # take the last events file
events_fname = os.listdir(path_tb_model + '/test/')[0]
max_epoch = 0
for e in tf.train.summary_iterator(path_tb_model + '/test/' + events_fname):
if e.step > max_epoch:
max_epoch = e.step
print('max_epoch {}, restored_model {}'.format(max_epoch, path_tb_model))
return max_epoch
class Logger:
def __init__(self):
self.lst_this_run = []
self.lst_whole_exp = []
def add(self, string):
self.lst_this_run.append(string)
print(string)
def clear(self):
self.lst_this_run = []
def to_file(self, folder, this_run_file):
if not os.path.exists(folder):
os.makedirs(folder)
if this_run_file is not None:
with open(folder + this_run_file, 'w') as f:
f.write('\n'.join(self.lst_this_run))
def save(var, f_name):
with open(f_name, 'ab+') as file_write:
pickle.dump(var, file_write)
def read(f_name):
with open(f_name, 'rb') as file_read:
return pickle.load(file_read)
def create_folders(folders):
for folder in folders:
current_folder = ''
for component in folder.split('/')[:-1]: # the last element of the list is ''
current_folder += component + '/'
if not os.path.exists(folder):
os.makedirs(folder)
def create_hps_str(hps):
# We can't take all hps for file names, so we select the most important ones
hyperparam_str = "dataset={} model={} p_norm={} lmbd={} at_frac={} pgd_eps={} pgd_niter={} frac_perm={} loss={}".\
format(hps.dataset, hps.model, hps.p, hps.lmbd, hps.at_frac, hps.pgd_eps, hps.pgd_niter, hps.frac_perm, hps.loss)
return hyperparam_str
def save_results(log, saver, sess, metrics, epoch, hps, hps_str, cur_timestamp, base_path):
# Example: exps/at_l2_basic_arch/logs/mnist/
file_name = '{}_{}'.format(cur_timestamp, hps_str)
logs_path = '{}/{}/{}/{}/'.format(base_path, hps.exp_name, file_name, 'logs')
models_path = '{}/{}/{}/{}/'.format(base_path, hps.exp_name, file_name, 'models')
mat_path = '{}/{}/{}/{}/'.format(base_path, hps.exp_name, file_name, 'mat')
metrics_path = '{}/{}/{}/{}/'.format(base_path, hps.exp_name, file_name, 'metrics')
create_folders([logs_path, models_path, mat_path, metrics_path])
np.savetxt(metrics_path + file_name, np.array(metrics)) # save optimization metrics for future plots
saver.save(sess, models_path + file_name, global_step=epoch) # save TF model for future real robustness test
log.to_file(logs_path, file_name)
vars = tf.trainable_variables()
var_val_dict = dict([(var.name, val) for var, val in zip(vars, sess.run(vars))])
scipy.io.savemat(mat_path + file_name, mdict=var_val_dict)
def avg_tensor_list(tensor_list):
tensors = tf.stack(axis=0, values=tensor_list)
return tf.reduce_mean(tensors, axis=0)
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads