-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtwin_dqn.py
131 lines (104 loc) · 3.77 KB
/
twin_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from dqn import DQN
class TwinDQN(nn.Module):
def __init__(self,
channels_in,
num_actions,
pretrained_subnet1=False,
pretrained_subnet2=False,
frozen=False):
super(TwinDQN, self).__init__()
# Subnet 1
subnet1 = self.load_subnet(channels_in=channels_in, pretrained_net=pretrained_subnet1)
feats_subnet1 = list(subnet1.children())
self.subnet1 = nn.Sequential(*feats_subnet1[0:9])
# Subnet 2
subnet2 = self.load_subnet(channels_in=channels_in, pretrained_net=pretrained_subnet2)
feats_subnet2 = list(subnet2.children())
self.subnet2 = nn.Sequential(*feats_subnet2[0:9])
# Freeze weights from pretrained models
if frozen:
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.requires_grad = False
print('Subnets weights frozen')
# Union net
self.fc5 = nn.Linear(in_features=1024,
out_features=512)
self.relu5 = nn.ReLU(True)
self.fc6 = nn.Linear(in_features=512,
out_features=num_actions)
def load_subnet(self, channels_in, pretrained_net=None):
"""
Loads subnet
If there is a pretrained model, its parameters are used
Inputs:
- channels_in: int
Returns:
- subnet
"""
subnet = DQN(channels_in=channels_in, num_actions=1)
if pretrained_net:
pretrained_dict = torch.load(pretrained_net,
map_location=lambda storage,
loc: storage)
subnet_dict = subnet.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in subnet_dict
and v.size() == subnet_dict[k].size()}
# 2. overwrite entries in the existing state dict
subnet_dict.update(pretrained_dict)
# 3. load the new state dict
subnet.load_state_dict(subnet_dict)
print('Loaded pretrained subnet...')
return subnet
def forward(self, x):
"""
Forward pass of the dqn. Should not be called
manually but by calling a model instance directly.
Inputs:
- x: PyTorch input Variable
"""
inp = torch.chunk(x,8,dim=1)
in2 = inp[1]
in1 = inp[0]
for i in range(1,4):
in2 = torch.cat((in2,inp[2*i+1]),dim = 1)
in1 = torch.cat((in1,inp[2*i]),dim = 1)
# Subnet 1
in1 = self.subnet1(in1)
# Subnet 2
in2 = self.subnet2(in2)
x = torch.cat((in1,in2),dim = 1)
# Union net
x = self.fc5(x)
x = self.relu5(x)
x = self.fc6(x)
return x
@property
def is_cuda(self):
"""
Check if model parameters are allocated on the GPU.
"""
return next(self.parameters()).is_cuda
def save(self, path):
"""
Save model with its parameters to the given path. Conventionally the
path should end with "*.model".
Inputs:
- path: path string
"""
print('Saving model... %s' % path)
torch.save(self.state_dict(), path)
def load(self, path):
"""
Load model with its parameters from the given path. Conventionally the
path should end with "*.model".
Inputs:
- path: path string
"""
print('Loading model... %s' % path)
self.load_state_dict(torch.load(path, map_location=lambda storage, loc: storage))