-
Notifications
You must be signed in to change notification settings - Fork 0
/
opencv.py
45 lines (35 loc) · 1.46 KB
/
opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import numpy as np
limit = 0.45 # sensibilidade
algo = 0.2 # algoritmo para quebrar repetição da detecção
cam = cv2.VideoCapture(0) # seleção de camera - se só tem uma no sistema, usar "0"
classNames = []
classFile = 'coco.names'
with open(classFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
# base de dados
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
config = cv2.dnn_DetectionModel(weightsPath, configPath)
config.setInputSize(360, 360)
config.setInputScale(1.0 / 127.5)
config.setInputMean((127.5, 127.5, 127.5))
config.setInputSwapRB(True)
while True:
success, img = cam.read()
classIds, perga, bbox = config.detect(img, confThreshold=limit)
bbox = list(bbox)
perga = list(np.array(perga).reshape(1, -1)[0])
perga = list(map(float, perga))
indices = cv2.dnn.NMSBoxes(bbox, perga, limit, algo)
for i in indices:
i = i[0]
box = bbox[i]
x, y, w, h = box[0], box[1], box[2], box[3]
cv2.rectangle(img, (x, y), (x + w, h + y), color=(255, 255, 0), thickness=2) # cor e grossura da identifição
cv2.putText(img, classNames[classIds[i][0] - 1].upper(), (box[0] + 10, box[1] + 30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("Sexta-Feira", img) # nome da janela de saida de img
key = cv2.waitKey(1) # intervalo na tecla
if key == 27: # tecla esc pra sair
break