-
Notifications
You must be signed in to change notification settings - Fork 2
/
factor_disVAE.py
267 lines (239 loc) · 12.7 KB
/
factor_disVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import torch
import torchvision
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init
import torch.optim as optim
import numpy as np
class Sprites(torch.utils.data.Dataset):
def __init__(self,path,size):
self.path = path
self.length = size;
def __len__(self):
return self.length
def __getitem__(self,idx):
return torch.load(self.path+'/%d.sprite' % (idx+1))
class FullQDisentangledVAE(nn.Module):
def __init__(self,frames,f_dim,z_dim,conv_dim,hidden_dim):
super(FullQDisentangledVAE,self).__init__()
self.f_dim = f_dim
self.z_dim = z_dim
self.frames = frames
self.conv_dim = conv_dim
self.hidden_dim = hidden_dim
self.f_lstm = nn.LSTM(self.conv_dim, self.hidden_dim, 1,
bidirectional=True,batch_first=True)
self.f_mean = nn.Linear(self.hidden_dim*2, self.f_dim)
self.f_mean_drop = nn.Dropout(0.3)
self.f_logvar_drop = nn.Dropout(0.3)
self.f_logvar = nn.Linear(self.hidden_dim*2, self.f_dim)
self.z_lstm = nn.LSTM(self.conv_dim, self.hidden_dim, 1,
bidirectional=True,batch_first=True)
self.z_rnn = nn.RNN(self.hidden_dim*2, self.hidden_dim,batch_first=True)
self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
self.z_mean_drop = nn.Dropout(0.3)
self.z_logvar_drop = nn.Dropout(0.3)
self.conv1 = nn.Conv2d(3,256,kernel_size=4,stride=2,padding=1)
self.conv2 = nn.Conv2d(256,256,kernel_size=4,stride=2,padding=1)
self.bn2 = nn.BatchNorm2d(256)
self.drop2 = nn.Dropout2d(0.4)
self.conv3 = nn.Conv2d(256,256,kernel_size=4,stride=2,padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.drop3 = nn.Dropout2d(0.4)
self.conv4 = nn.Conv2d(256,256,kernel_size=4,stride=2,padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.drop4 = nn.Dropout2d(0.4)
self.conv_fc = nn.Linear(4*4*256,self.conv_dim) #4*4 is size 256 is channels
self.drop_fc = nn.Dropout(0.4)
self.bnf = nn.BatchNorm1d(self.conv_dim)
self.deconv_fc = nn.Linear(self.f_dim+self.z_dim,4*4*256) #4*4 is size 256 is channels
self.deconv_bnf = nn.BatchNorm1d(4*4*256)
self.drop_fc_deconv = nn.Dropout(0.4)
self.deconv4 = nn.ConvTranspose2d(256,256,kernel_size=4,stride=2,padding=1)
self.dbn4 = nn.BatchNorm2d(256)
self.drop4_deconv = nn.Dropout2d(0.4)
self.deconv3 = nn.ConvTranspose2d(256,256,kernel_size=4,stride=2,padding=1)
self.dbn3 = nn.BatchNorm2d(256)
self.drop3_deconv = nn.Dropout2d(0.4)
self.deconv2 = nn.ConvTranspose2d(256,256,kernel_size=4,stride=2,padding=1)
self.dbn2 = nn.BatchNorm2d(256)
self.drop2_deconv = nn.Dropout2d(0.4)
self.deconv1 = nn.ConvTranspose2d(256,3,kernel_size=4,stride=2,padding=1)
for m in self.modules():
if isinstance(m,nn.BatchNorm2d) or isinstance(m,nn.BatchNorm1d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Conv2d) or isinstance(m,nn.ConvTranspose2d) or isinstance(m,nn.Linear):
nn.init.kaiming_normal_(m.weight,nonlinearity='relu') #Change nonlinearity to 'leaky_relu' if you switch
nn.init.xavier_normal_(self.deconv1.weight,nn.init.calculate_gain('tanh'))
def encode_frames(self,x):
x = x.view(-1,3,64,64) #Batchwise stack the 8 images for applying convolutions parallely
x = F.leaky_relu(self.conv1(x),0.1) #Remove batchnorm, the encoder must learn the data distribution
x = self.drop2(F.leaky_relu(self.bn2(self.conv2(x)),0.1))
x = self.drop3(F.leaky_relu(self.bn3(self.conv3(x)),0.1))
x = self.drop4(F.leaky_relu(self.bn4(self.conv4(x)),0.1))
x = x.view(-1,4*4*256) #4*4 is size 256 is channels
x = self.drop_fc(F.leaky_relu(self.bnf(self.conv_fc(x)),0.1))
x = x.view(-1,self.frames,self.conv_dim)
return x
def decode_frames(self,zf):
x = zf.view(-1,self.f_dim+self.z_dim) #For batchnorm1D to work, the frames should be stacked batchwise
x = self.drop_fc_deconv(F.leaky_relu(self.deconv_bnf(self.deconv_fc(x)),0.1))
x = x.view(-1,256,4,4) #The 8 frames are stacked batchwise
x = self.drop4_deconv(F.leaky_relu(self.dbn4(self.deconv4(x)),0.1))
x = self.drop3_deconv(F.leaky_relu(self.dbn3(self.deconv3(x)),0.1))
x = self.drop2_deconv(F.leaky_relu(self.dbn2(self.deconv2(x)),0.1))
x = torch.tanh(self.deconv1(x)) #Images are normalized to -1,1 range hence use tanh. Remove batchnorm because it should fit the final distribution
return x.view(-1,self.frames,3,64,64) #Convert the stacked batches back into frames. Images are 64*64*3
def reparameterize(self,mean,logvar):
if self.training:
eps = torch.randn_like(logvar)
std = torch.exp(0.5*logvar)
z = mean + eps*std
return z
else:
return mean
def encode_f(self,x):
lstm_out,_ = self.f_lstm(x)
mean = self.f_mean(self.f_mean_drop(lstm_out[:,self.frames-1])) #The forward and the reverse are already concatenated
logvar = self.f_logvar(self.f_logvar_drop(lstm_out[:,self.frames-1])) # TODO: Check if its the correct forward and reverse
#print("Mean shape for f : {}".format(mean.shape))
return mean,logvar,self.reparameterize(mean,logvar)
def encode_z(self,x):
lstm_out,_ = self.z_lstm(x)
rnn_out,_ = self.z_rnn(lstm_out)
mean = self.z_mean(self.z_mean_drop(rnn_out))
logvar = self.z_logvar(self.z_logvar_drop(rnn_out))
return mean,logvar,self.reparameterize(mean,logvar)
def forward(self,x):
conv_x = self.encode_frames(x)
f_mean,f_logvar,f = self.encode_f(conv_x)
z_mean,z_logvar,z = self.encode_z(conv_x)
f_expand = f.unsqueeze(1).expand(-1,self.frames,self.f_dim)
zf = torch.cat((z,f_expand),dim=2)
recon_x = self.decode_frames(zf)
return f_mean,f_logvar,f,z_mean,z_logvar,z,recon_x
def loss_fn(original_seq,recon_seq,f_mean,f_logvar,z_mean,z_logvar):
mse = F.mse_loss(recon_seq,original_seq,reduction='sum');
kld_f = -0.5 * torch.sum(1 + f_logvar - torch.pow(f_mean,2) - torch.exp(f_logvar))
kld_z = -0.5 * torch.sum(1 + z_logvar - torch.pow(z_mean,2) - torch.exp(z_logvar))
return mse + kld_f + kld_z
class Trainer(object):
def __init__(self,model,device,train,test,trainloader,testloader,epochs,batch_size,learning_rate,nsamples,sample_path,recon_path,checkpoints):
self.trainloader = trainloader
self.train = train
self.test = test
self.testloader = testloader
self.start_epoch = 0
self.epochs = epochs
self.device = device
self.batch_size = batch_size
self.model = model
self.model.to(device)
self.learning_rate = learning_rate
self.checkpoints = checkpoints
self.optimizer = optim.Adam(self.model.parameters(),self.learning_rate)
self.samples = nsamples
self.sample_path = sample_path
self.recon_path = recon_path
self.test_f = torch.randn(self.samples,self.model.f_dim,device=self.device)
self.test_z = torch.randn(self.samples,model.frames,model.z_dim,device=self.device)
f_expand = self.test_f.unsqueeze(1).expand(-1,model.frames,model.f_dim)
self.test_zf = torch.cat((self.test_z,f_expand),dim=2)
self.epoch_losses = []
self.image1 = torch.load('image1.sprite')
self.image2 = torch.load('image2.sprite')
self.image1 = self.image1.to(device)
self.image2 = self.image2.to(device)
self.image1 = torch.unsqueeze(self.image1,0)
self.image2= torch.unsqueeze(self.image2,0)
def save_checkpoint(self,epoch):
torch.save({
'epoch' : epoch+1,
'state_dict' : self.model.state_dict(),
'optimizer' : self.optimizer.state_dict(),
'losses' : self.epoch_losses},
self.checkpoints)
def load_checkpoint(self):
try:
print("Loading Checkpoint from '{}'".format(self.checkpoints))
checkpoint = torch.load(self.checkpoints)
self.start_epoch = checkpoint['epoch']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.epoch_losses = checkpoint['losses']
print("Resuming Training From Epoch {}".format(self.start_epoch))
except:
print("No Checkpoint Exists At '{}'.Start Fresh Training".format(self.checkpoints))
self.start_epoch = 0
def sample_frames(self,epoch):
with torch.no_grad():
recon_x = self.model.decode_frames(self.test_zf)
recon_x = recon_x.view(16,3,64,64)
torchvision.utils.save_image(recon_x,'./Factorised/%s/epoch%d.png' % (self.sample_path,epoch))
def recon_frame(self,epoch,original):
with torch.no_grad():
_,_,_,_,_,_,recon = self.model(original)
image = torch.cat((original,recon),dim=0)
print(image.shape)
image = image.view(16,3,64,64)
torchvision.utils.save_image(image,'./Factorised/%s/epoch%d.png' % (self.recon_path,epoch))
def style_transfer(self,epoch):
with torch.no_grad():
conv1 = self.model.encode_frames(self.image1)
conv2 = self.model.encode_frames(self.image2)
_,_,image1_f = self.model.encode_f(conv1)
image1_f_expand = image1_f.unsqueeze(1).expand(-1,self.model.frames,self.model.f_dim)
_,_,image1_z = self.model.encode_z(conv1)
_,_,image2_f = self.model.encode_f(conv2)
image2_f_expand = image2_f.unsqueeze(1).expand(-1,self.model.frames,self.model.f_dim)
_,_,image2_z = self.model.encode_z(conv2)
image1swap_zf = torch.cat((image2_z,image1_f_expand),dim=2)
image1_body_image2_motion = self.model.decode_frames(image1swap_zf)
image1_body_image2_motion = torch.squeeze(image1_body_image2_motion,0)
image2swap_zf = torch.cat((image1_z,image2_f_expand),dim=2)
image2_body_image1_motion = self.model.decode_frames(image2swap_zf)
image2_body_image1_motion = torch.squeeze(image2_body_image1_motion,0)
os.makedirs(os.path.dirname('./Factorised/transfer/epoch%d/image1_body_image2_motion.png' % epoch),exist_ok=True)
torchvision.utils.save_image(image1_body_image2_motion,'./Factorised/transfer/epoch%d/image1_body_image2_motion.png' % epoch)
torchvision.utils.save_image(image2_body_image1_motion,'./Factorised/transfer/epoch%d/image2_body_image1_motion.png' % epoch)
def train_model(self):
self.model.train()
for epoch in range(self.start_epoch,self.epochs):
losses = []
print("Running Epoch : {}".format(epoch+1))
for i,data in enumerate(self.trainloader,1):
data = data.to(device)
self.optimizer.zero_grad()
f_mean,f_logvar,f,z_mean,z_logvar,z,recon_x = self.model(data)
loss = loss_fn(data,recon_x,f_mean,f_logvar,z_mean,z_logvar)
loss.backward()
self.optimizer.step()
losses.append(loss.item())
meanloss = np.mean(losses)
self.epoch_losses.append(meanloss)
print("Epoch {} : Average Loss: {}".format(epoch+1,meanloss))
self.save_checkpoint(epoch)
self.model.eval()
self.sample_frames(epoch+1)
sample = self.test[int(torch.randint(0,len(self.test),(1,)).item())]
sample = torch.unsqueeze(sample,0)
sample = sample.to(self.device)
self.recon_frame(epoch+1,sample)
self.style_transfer(epoch+1)
self.model.train()
print("Training is complete")
if __name__ == '__main__':
vae = FullQDisentangledVAE(frames=8,f_dim=64,z_dim=32,hidden_dim=512,conv_dim=1024)
sprites_train = Sprites('./indexed-sprites/lpc-dataset/train/', 6687)
sprites_test = Sprites('./indexed-sprites/lpc-dataset/test/',873)
trainloader = torch.utils.data.DataLoader(sprites_train,batch_size=64,shuffle=True,num_workers=4)
testloader = torch.utils.data.DataLoader(sprites_test,batch_size=1,shuffle=True,num_workers=4)
device = torch.device('cuda:1')
trainer = Trainer(vae,device,sprites_train,sprites_test,trainloader,testloader,epochs=50,batch_size=64,learning_rate=0.0002,checkpoints='factor-disentangled-vae.model',nsamples = 2,sample_path='samples',
recon_path='recon')
trainer.load_checkpoint()
trainer.train_model()