-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMX3x_SPINANDBlockDevice.cpp
1326 lines (1102 loc) · 45.5 KB
/
MX3x_SPINANDBlockDevice.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* mbed Microcontroller Library
* Copyright (c) 2021 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "platform/Callback.h"
#include "MX3x_SPINANDBlockDevice.h"
#include <string.h>
#include "rtos/ThisThread.h"
#include "bch.h"
#ifndef MBED_CONF_MBED_TRACE_ENABLE
#define MBED_CONF_MBED_TRACE_ENABLE 0
#endif
#include "mbed_trace.h"
#define TRACE_GROUP "SPINAND"
using namespace std::chrono;
using namespace mbed;
/* SPINAND Parameters */
/****************************/
#ifndef UINT64_MAX
#define UINT64_MAX -1
#endif
#define QSPI_NO_ADDRESS_COMMAND UINT64_MAX
#define QSPI_ALT_DEFAULT_VALUE 0
// Get/Set Feature Address Definition
#define FEATURES_ADDR_BLOCK_PROTECTION 0xA0
#define FEATURES_ADDR_SECURE_OTP 0xB0
#define FEATURES_ADDR_STATUS 0xC0
// Status Register Bits
#define SPINAND_STATUS_BIT_WIP 0x1 // Write In Progress
#define SPINAND_STATUS_BIT_WEL 0x2 // Write Enable Latch
#define SPINAND_STATUS_BIT_ERASE_FAIL 0x4 // Erase failed
#define SPINAND_STATUS_BIT_PROGRAM_FAIL 0x8 // Program failed
#define SPINAND_STATUS_BIT_ECC_STATUS_MASK 0x30 // ECC status
#define SPINAND_STATUS_ECC_STATUS_NO_ERR 0x00
#define SPINAND_STATUS_ECC_STATUS_ERR_COR 0x10
#define SPINAND_STATUS_ECC_STATUS_ERR_NO_COR 0x20
// Secure OTP Register Bits
#define SPINAND_SECURE_BIT_QE 0x01 // Quad enable
#define SPINAND_SECURE_BIT_CONT 0x04 // continuous read enable
#define SPINAND_SECURE_BIT_ECC_EN 0x10 // On-die ECC enable
#define SPINAND_SECURE_BIT_OTP_EN 0x40 //
#define SPINAND_SECURE_BIT_OTP_PROT 0x80 //
// Block Protection Register Bits
#define SPINAND_BLOCK_PROT_BIT_SP 0x01
#define SPINAND_BLOCK_PROT_BIT_COMPLE 0x02
#define SPINAND_BLOCK_PROT_BIT_INVERT 0x04
#define SPINAND_BLOCK_PROT_BIT_BP0 0x08
#define SPINAND_BLOCK_PROT_BIT_BP1 0x10
#define SPINAND_BLOCK_PROT_BIT_BP2 0x20
#define SPINAND_BLOCK_PROT_BIT_BPRWD 0x80
#define SPINAND_BLOCK_PROT_BIT_BP_MASK 0x38
#define SPINAND_BLOCK_PROT_BP_OFFSET 3
#define SPINAND_BLOCK_PROT_COMPLE_OFFSET 1
#define IS_MEM_READY_MAX_RETRIES 10000
// General SPI NAND Flash instructions
#define SPINAND_INST_RDID 0x9F // Read Manufacturer and JDEC Device ID
#define SPINAND_INST_RSR1 0x05 // Read status register 1
#define SPINAND_INST_PAGE_READ 0x13 // Read data from array to cache
#define SPINAND_INST_READ_CACHE 0x03 // Read data from cache
#define SPINAND_INST_READ_CACHE2 0x3B
#define SPINAND_INST_READ_CACHE4 0x6B
#define SPINAND_INST_READ_CACHE144 0xEB
#define SPINAND_INST_READ_CACHE_SEQ 0x31
#define SPINAND_INST_READ_CACHE_END 0x3F
#define SPINAND_INST_WREN 0x06 // Write enable
#define SPINAND_INST_WRDI 0x04 // Write disable
#define SPINAND_INST_PP_LOAD 0x02
#define SPINAND_INST_PP_RAND_LOAD 0x84
#define SPINAND_INST_4PP_LOAD 0x32
#define SPINAND_INST_4PP_RAND_LOAD 0x34
#define SPINAND_INST_PROGRAM_EXEC 0x10
#define SPINAND_INST_BE 0xD8
#define SPINAND_INST_GET_FEATURE 0x0F
#define SPINAND_INST_SET_FEATURE 0x1F
#define SPINAND_INST_RESET 0xFF
#define SPINAND_INST_ECC_STAT_READ 0x7C
#define SPINAND_INST_EXIT_CONTI_READ 0x63
// Default read/legacy erase instructions
//#define SPINAND_INST_READ_DEFAULT SPINAND_INST_READ_CACHE
//#define SPINAND_INST_READ_DEFAULT SPINAND_INST_READ_CACHE2
#define SPINAND_INST_READ_DEFAULT SPINAND_INST_READ_CACHE4
//#define SPINAND_INST_READ_DEFAULT SPINAND_INST_READ_CACHE144
//#define SPINAND_INST_PROGRAM_DEFAULT SPINAND_INST_PP_LOAD
#define SPINAND_INST_PROGRAM_DEFAULT SPINAND_INST_4PP_LOAD
#define SPINAND_BLOCK_OFFSET 0x40000
#define SPINAND_PAGE_OFFSET 0x1000
#define SPINAND_PAGE_MASK 0xFFFFF000
#define SPI_NAND_COLUMN_ADDR_SIZE QSPI_CFG_ADDR_SIZE_16
#define SPI_NAND_ROW_ADDR_SIZE QSPI_CFG_ADDR_SIZE_24
/* Init function to initialize Different Devices CS static list */
static PinName *generate_initialized_active_spinand_csel_arr();
// Static Members for different devices csel
// _devices_mutex is used to lock csel list - only one MX3x_SPINANDBlockDevice instance per csel is allowed
SingletonPtr<rtos::Mutex> MX3x_SPINANDBlockDevice::_devices_mutex;
int MX3x_SPINANDBlockDevice::_number_of_active_spinand_flash_csel = 0;
PinName *MX3x_SPINANDBlockDevice::_active_spinand_flash_csel_arr = generate_initialized_active_spinand_csel_arr();
/********* Public API Functions *********/
/****************************************/
MX3x_SPINANDBlockDevice::MX3x_SPINANDBlockDevice(PinName io0, PinName io1, PinName io2, PinName io3, PinName sclk, PinName csel,
int clock_mode,
int freq)
:
_qspi(io0, io1, io2, io3, sclk, csel, clock_mode), _csel(csel), _freq(freq),
_init_ref_count(0),
_is_initialized(false)
{
_unique_device_status = add_new_csel_instance(csel);
if (_unique_device_status == 0) {
tr_debug("Adding a new MX3x_SPINANDBlockDevice csel: %d", (int)csel);
} else if (_unique_device_status == -1) {
tr_error("MX3x_SPINANDBlockDevice with the same csel(%d) already exists", (int)csel);
} else {
tr_error("Too many different MX3x_SPINANDBlockDevice devices - max allowed: %d", SPINAND_MAX_ACTIVE_FLASH_DEVICES);
}
// Default Bus Setup 1_1_1 with 0 dummy and mode cycles
_inst_width = QSPI_CFG_BUS_SINGLE;
_address_width = QSPI_CFG_BUS_SINGLE;
_address_size = QSPI_CFG_ADDR_SIZE_8;
_alt_size = 0;
_dummy_cycles = 8;
_data_width = QSPI_CFG_BUS_SINGLE;
// Set default read/erase instructions
_read_instruction = SPINAND_INST_READ_DEFAULT;
_program_instruction = SPINAND_INST_PROGRAM_DEFAULT;
}
int MX3x_SPINANDBlockDevice::init()
{
int status = SPINAND_BD_ERROR_OK;
if (_unique_device_status == 0) {
tr_debug("MX3x_SPINANDBlockDevice csel: %d", (int)_csel);
} else if (_unique_device_status == -1) {
tr_error("MX3x_SPINANDBlockDevice with the same csel(%d) already exists", (int)_csel);
return SPINAND_BD_ERROR_DEVICE_NOT_UNIQUE;
} else {
tr_error("Too many different MX3x_SPINANDBlockDevice devices - max allowed: %d", SPINAND_MAX_ACTIVE_FLASH_DEVICES);
return SPINAND_BD_ERROR_DEVICE_MAX_EXCEED;
}
_mutex.lock();
// All commands other than Read and RSFDP use default 1-1-1 bus mode (Program/Erase are constrained by flash memory performance more than bus performance)
if (QSPI_STATUS_OK != _qspi.configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, _address_size, QSPI_CFG_BUS_SINGLE,
0, QSPI_CFG_BUS_SINGLE, 0)) {
tr_error("_qspi_configure_format failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
if (!_is_initialized) {
_init_ref_count = 0;
}
_init_ref_count++;
if (_init_ref_count != 1) {
goto exit_point;
}
_alt_size = 0;
_dummy_cycles = 8;
_page_shift = 12;
_ecc_bits = 0;
if (QSPI_STATUS_OK != _qspi_set_frequency(_freq)) {
tr_error("QSPI Set Frequency Failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
if (!_read_otp_onfi()) {
return SPINAND_BD_ERROR_READY_FAILED;
}
// Synchronize Device
if (false == _is_mem_ready()) {
tr_error("Init - _is_mem_ready Failed");
status = SPINAND_BD_ERROR_READY_FAILED;
goto exit_point;
}
if (0 != _clear_block_protection()) {
tr_error("Init - clearing block protection failed");
status = SPINAND_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
if ((_read_instruction == SPINAND_INST_READ_CACHE4) || (_program_instruction == SPINAND_INST_4PP_LOAD)) {
if (QSPI_STATUS_OK != _set_quad_enable()) {
tr_error("SPI NAND Set Quad enable Failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
}
_is_initialized = true;
exit_point:
_mutex.unlock();
return status;
}
int MX3x_SPINANDBlockDevice::deinit()
{
int result = SPINAND_BD_ERROR_OK;
_mutex.lock();
if (!_is_initialized) {
_init_ref_count = 0;
_mutex.unlock();
return result;
}
_init_ref_count--;
if (_init_ref_count) {
_mutex.unlock();
return result;
}
// Disable Device for Writing
qspi_status_t status = _qspi_send_general_command(SPINAND_INST_WRDI, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
if (status != QSPI_STATUS_OK) {
tr_error("Write Disable failed");
result = SPINAND_BD_ERROR_DEVICE_ERROR;
}
if (_ecc_bits > 0) {
_bch_free();
}
_is_initialized = false;
_mutex.unlock();
if (_unique_device_status == 0) {
remove_csel_instance(_csel);
}
return result;
}
int MX3x_SPINANDBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
int status = SPINAND_BD_ERROR_OK;
bool read_failed = false;
uint32_t offset = 0;
uint32_t chunk = 0;
bd_size_t read_bytes = 0;
tr_debug("Read Inst: 0x%xh", _read_instruction);
while (size > 0) {
// Read on _page_size_bytes boundaries (Default 2048 bytes a page)
offset = addr % _page_size;
chunk = (offset + size < _page_size) ? size : (_page_size - offset);
read_bytes = chunk;
_mutex.lock();
if (_ecc_bits == 0) {
if (_continuous_read) {
if (QSPI_STATUS_OK != _qspi_send_continuous_read_command(_read_instruction, buffer, addr, size)) {
tr_error("Read Command failed");
read_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
} else {
if (QSPI_STATUS_OK != _qspi_send_read_command(_read_instruction, buffer, addr, read_bytes)) {
tr_error("Read Command failed");
read_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
}
uint8_t status_reg;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_STATUS,
NULL, 0, (char *) &status_reg, 1)) {
tr_error("Reading Status Register failed");
read_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
if ((status_reg & SPINAND_STATUS_BIT_ECC_STATUS_MASK) == SPINAND_STATUS_ECC_STATUS_ERR_NO_COR) {
tr_error("Reading data failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
read_failed = true;
goto exit_point;
}
if (_continuous_read) {
return status;
}
} else {
uint8_t ecc_steps = _ecc_steps;
uint8_t *p = (uint8_t *)_page_buf;
if (QSPI_STATUS_OK != _qspi_send_read_command(_read_instruction, (void *)_page_buf, addr & SPINAND_PAGE_MASK, _page_size + _oob_size)) {
tr_error("Read Command failed");
read_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
memcpy(_ecc_code, _page_buf + _page_size + _ecc_layout_pos, _ecc_bytes * _ecc_steps);
p = (uint8_t *)_page_buf;
ecc_steps = _ecc_steps;
for (uint8_t i = 0 ; ecc_steps; ecc_steps--, i += _ecc_bytes, p += _ecc_size) {
memset(_nbc.bch->input_data, 0x0, (1 << _nbc.bch->m) / 8);
memcpy(_nbc.bch->input_data + _ecc_bytes, p, _ecc_size);
int res = bch_decode(_nbc.bch, _nbc.bch->input_data, (unsigned int *)(_ecc_code + i));
if (res < 0) {
tr_error("Reading data failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
read_failed = true;
goto exit_point;
}
memcpy(p, _nbc.bch->input_data + _ecc_bytes, _ecc_size);
}
memcpy(buffer, _page_buf + offset, read_bytes);
}
buffer = static_cast< uint8_t *>(buffer) + chunk;
addr += SPINAND_PAGE_OFFSET;
size -= chunk;
_mutex.unlock();
}
exit_point:
if (read_failed) {
_mutex.unlock();
}
return status;
}
int MX3x_SPINANDBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
qspi_status_t result = QSPI_STATUS_OK;
bool program_failed = false;
int status = SPINAND_BD_ERROR_OK;
uint32_t offset = 0;
uint32_t chunk = 0;
bd_size_t written_bytes = 0;
tr_debug("Program - Buff: %p, addr: %llu, size: %llu", buffer, addr, size);
while (size > 0) {
// Write on _page_size_bytes boundaries (Default 2048 bytes a page)
offset = addr % _page_size;
chunk = (offset + size < _page_size) ? size : (_page_size - offset);
written_bytes = chunk;
_mutex.lock();
//Send WREN
if (_set_write_enable() != 0) {
tr_error("Write Enable failed");
program_failed = true;
status = SPINAND_BD_ERROR_WREN_FAILED;
goto exit_point;
}
if (_ecc_bits == 0) {
result = _qspi_send_program_command(_program_instruction, buffer, addr, &written_bytes);
if ((result != QSPI_STATUS_OK) || (chunk != written_bytes)) {
tr_error("Write failed");
program_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
} else {
uint8_t *p = (uint8_t *)_page_buf;
uint8_t ecc_steps = _ecc_steps;
if (size < _page_size) {
tr_error("Write failed");
program_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
// prepare data
memset(_page_buf, 0xff, _page_size + _oob_size);
memcpy(_page_buf + offset, (uint8_t *)buffer, written_bytes);
// calculate the software ECC
for (uint8_t i = 0; ecc_steps; ecc_steps--, i += _ecc_bytes, p += _ecc_size) {
memset(_nbc.bch->input_data, 0x0, (1 << _nbc.bch->m) / 8);
memcpy(_nbc.bch->input_data + _ecc_bytes, p, _ecc_size);
_bch_calculate_ecc(_nbc.bch->input_data, _ecc_calc + i);
}
// prepare ECC code
memcpy(_page_buf + _page_size + _ecc_layout_pos, _ecc_calc, _ecc_bytes * _ecc_steps);
written_bytes = _page_size + _oob_size;
result = _qspi_send_program_command(_program_instruction, (void *)_page_buf, addr & SPINAND_PAGE_MASK, &written_bytes);
if ((result != QSPI_STATUS_OK)) {
tr_error("Write failed");
program_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
}
buffer = static_cast<const uint8_t *>(buffer) + chunk;
addr += SPINAND_PAGE_OFFSET;
size -= chunk;
if (false == _is_mem_ready()) {
tr_error("Device not ready after write, failed");
program_failed = true;
status = SPINAND_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex.unlock();
}
exit_point:
if (program_failed) {
_mutex.unlock();
}
return status;
}
int MX3x_SPINANDBlockDevice::erase(bd_addr_t addr, bd_size_t size)
{
bool erase_failed = false;
int status = SPINAND_BD_ERROR_OK;
tr_debug("Erase - addr: %llu, size: %llu", addr, size);
if ((addr + size) > _flash_size) {
tr_error("Erase exceeds flash device size");
return SPINAND_BD_ERROR_INVALID_ERASE_PARAMS;
}
if (((addr % SPINAND_BLOCK_OFFSET) != 0) || ((size % get_erase_size()) != 0)) {
tr_error("Invalid erase - unaligned address and size");
return SPINAND_BD_ERROR_INVALID_ERASE_PARAMS;
}
while (size > 0) {
_mutex.lock();
if (_set_write_enable() != 0) {
tr_error("SPI NAND Erase Device not ready - failed");
erase_failed = true;
status = SPINAND_BD_ERROR_WREN_FAILED;
goto exit_point;
}
if (QSPI_STATUS_OK != _qspi_send_erase_command(SPINAND_INST_BE, addr, size)) {
tr_error("SPI NAND Erase command failed!");
erase_failed = true;
status = SPINAND_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
addr += SPINAND_BLOCK_OFFSET;
if (size > _block_size) {
size -= _block_size;
} else {
size = 0;
}
if (false == _is_mem_ready()) {
tr_error("SPI NAND After Erase Device not ready - failed");
erase_failed = true;
status = SPINAND_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex.unlock();
}
exit_point:
if (erase_failed) {
_mutex.unlock();
}
return status;
}
bool MX3x_SPINANDBlockDevice::is_bad_block(uint16_t blk_idx)
{
mbed::bd_addr_t addr;
uint8_t mark[2];
addr = (blk_idx << _block_shift) + _page_size;
if (QSPI_STATUS_OK != _read_oob(mark, addr, sizeof(mark))) {
tr_error("Read Command failed");
return 0;
}
return (mark[0] != 0xff || mark[1] != 0xff) ? 1 : 0;
}
int MX3x_SPINANDBlockDevice::mark_bad_block(uint16_t blk_idx)
{
int status = SPINAND_BD_ERROR_OK;
mbed::bd_addr_t addr;
uint8_t mark[2];
mark[0] = 0x00;
mark[1] = 0x00;
addr = (blk_idx << _block_shift) + _page_size;
if (QSPI_STATUS_OK != _program_oob(mark, addr, sizeof(mark))) {
tr_error("Program Command failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
}
return status;
}
bd_size_t MX3x_SPINANDBlockDevice::get_read_size() const
{
// Return minimum read size in bytes for the device
return _page_size;
}
bd_size_t MX3x_SPINANDBlockDevice::get_program_size() const
{
// Return minimum program/write size in bytes for the device
return _page_size;
}
bd_size_t MX3x_SPINANDBlockDevice::get_erase_size() const
{
return _block_size;
}
bd_size_t MX3x_SPINANDBlockDevice::get_erase_size(bd_addr_t addr) const
{
return _block_size;
}
const char *MX3x_SPINANDBlockDevice::get_type() const
{
return "SPINAND";
}
bd_size_t MX3x_SPINANDBlockDevice::size() const
{
return _flash_size;
}
int MX3x_SPINANDBlockDevice::get_erase_value() const
{
return 0xFF;
}
/********************************/
/* Different Device Csel Mgmt */
/********************************/
static PinName *generate_initialized_active_spinand_csel_arr()
{
PinName *init_arr = new PinName[SPINAND_MAX_ACTIVE_FLASH_DEVICES];
for (int i_ind = 0; i_ind < SPINAND_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
init_arr[i_ind] = NC;
}
return init_arr;
}
int MX3x_SPINANDBlockDevice::add_new_csel_instance(PinName csel)
{
int status = 0;
_devices_mutex->lock();
if (_number_of_active_spinand_flash_csel >= SPINAND_MAX_ACTIVE_FLASH_DEVICES) {
status = -2;
goto exit_point;
}
// verify the device is unique(no identical csel already exists)
for (int i_ind = 0; i_ind < SPINAND_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
if (_active_spinand_flash_csel_arr[i_ind] == csel) {
status = -1;
goto exit_point;
}
}
// Insert new csel into existing device list
for (int i_ind = 0; i_ind < SPINAND_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
if (_active_spinand_flash_csel_arr[i_ind] == NC) {
_active_spinand_flash_csel_arr[i_ind] = csel;
break;
}
}
_number_of_active_spinand_flash_csel++;
exit_point:
_devices_mutex->unlock();
return status;
}
int MX3x_SPINANDBlockDevice::remove_csel_instance(PinName csel)
{
int status = -1;
_devices_mutex->lock();
// remove the csel from existing device list
for (int i_ind = 0; i_ind < SPINAND_MAX_ACTIVE_FLASH_DEVICES; i_ind++) {
if (_active_spinand_flash_csel_arr[i_ind] == csel) {
_active_spinand_flash_csel_arr[i_ind] = NC;
if (_number_of_active_spinand_flash_csel > 0) {
_number_of_active_spinand_flash_csel--;
}
status = 0;
break;
}
}
_devices_mutex->unlock();
return status;
}
bool MX3x_SPINANDBlockDevice::_read_otp_onfi()
{
uint8_t secur_reg = 0, onfi_table[256];
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Register failed");
}
secur_reg |= SPINAND_SECURE_BIT_OTP_EN;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Security Register failed");
return 0;
}
if (QSPI_STATUS_OK != _qspi_send_read_command(SPINAND_INST_READ_CACHE, onfi_table, 1 << _page_shift, sizeof(onfi_table))) {
tr_error("Writing Security Register failed");
return 0;
}
// Note: For info about the ONFI parameter page encoding, see the specification:
// https://onfi.org/files/onfi_2_0_gold.pdf
// Specifically, section 5.6.1.
if (onfi_table[0] == 'O' && onfi_table[1] == 'N' && onfi_table[2] == 'F' && onfi_table[3] == 'I') {
tr_info("ONFI table found\n");
memcpy(_name, &onfi_table[32], sizeof(_name));
_name[31] = 0;
_page_size = onfi_table[80] + (onfi_table[81] << 8) + (onfi_table[82] << 16);
_oob_size = onfi_table[84] + (onfi_table[85] << 8);
_page_num = onfi_table[92] + (onfi_table[93] << 8);
_block_num = onfi_table[96] + (onfi_table[97] << 8);
_block_size = _page_size * _page_num;
switch (_page_size) {
case 2048 :
_page_shift = 12;
break;
case 4096 :
_page_shift = 13;
break;
}
switch (_page_num) {
case 64 :
_block_shift = _page_shift + 6;
break;
case 128 :
_block_shift = _page_shift + 7;
break;
case 256 :
_block_shift = _page_shift + 8;
break;
}
_flash_size = _block_size * _block_num;
_ecc_bits = onfi_table[112];
if (_ecc_bits > 0) {
_bch_init(_ecc_bits);
secur_reg &= ~SPINAND_SECURE_BIT_ECC_EN;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Register failed");
}
} else {
secur_reg |= SPINAND_SECURE_BIT_ECC_EN;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Register failed");
}
}
if (onfi_table[168] & 0x02) {
_continuous_read = true;
if (QSPI_STATUS_OK != _set_conti_read_enable()) {
tr_error("SPI NAND Set continuous read enable Failed");
return 0;
}
} else {
_continuous_read = false;
}
} else {
tr_error("ONFI table not found");
return 0;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Register failed");
}
secur_reg &= ~SPINAND_SECURE_BIT_OTP_EN;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Register failed");
}
return 1;
}
int MX3x_SPINANDBlockDevice::_read_oob(void *buffer, bd_addr_t addr, bd_size_t size)
{
int status = SPINAND_BD_ERROR_OK;
_mutex.lock();
if (QSPI_STATUS_OK != _qspi_send_read_command(_read_instruction, buffer, addr, size)) {
tr_error("Read Command failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
}
_mutex.unlock();
return status;
}
int MX3x_SPINANDBlockDevice::_program_oob(const void *buffer, bd_addr_t addr, bd_size_t size)
{
qspi_status_t result = QSPI_STATUS_OK;
bool program_failed = false;
int status = SPINAND_BD_ERROR_OK;
_mutex.lock();
//Send WREN
if (_set_write_enable() != 0) {
tr_error("Write Enable failed");
status = SPINAND_BD_ERROR_WREN_FAILED;
goto exit_point;
}
result = _qspi_send_program_command(_program_instruction, buffer, addr, &size);
if (result != QSPI_STATUS_OK) {
tr_error("Write failed");
status = SPINAND_BD_ERROR_DEVICE_ERROR;
}
_mutex.unlock();
exit_point:
if (program_failed) {
_mutex.unlock();
}
return status;
}
int MX3x_SPINANDBlockDevice::_set_quad_enable()
{
uint8_t secur_reg = 0;
if (false == _is_mem_ready()) {
tr_error("Device not ready, set quad enable failed");
return -1;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Security Register failed");
}
secur_reg |= SPINAND_SECURE_BIT_QE;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Security Register failed");
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Security Register failed");
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, set quad enable failed");
return -1;
}
return 0;
}
int MX3x_SPINANDBlockDevice::_clear_block_protection()
{
uint8_t block_protection_reg = 0;
if (false == _is_mem_ready()) {
tr_error("Device not ready, clearing block protection failed");
return -1;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_BLOCK_PROTECTION,
NULL, 0, (char *) &block_protection_reg, 1)) {
tr_error("Reading Block Protection Register failed");
}
block_protection_reg &= ~SPINAND_BLOCK_PROT_BIT_BP_MASK;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_BLOCK_PROTECTION,
(char *) &block_protection_reg, 1, NULL, 0)) {
tr_error("Writing Block Protection Register failed");
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_BLOCK_PROTECTION,
NULL, 0, (char *) &block_protection_reg, 1)) {
tr_error("Reading Block Protection Register failed");
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, clearing block protection failed");
return -1;
}
return 0;
}
int MX3x_SPINANDBlockDevice::_set_write_enable()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
uint8_t status_value = 0;
int status = -1;
do {
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_WREN, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("Sending WREN command FAILED");
break;
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, write failed");
break;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_STATUS,
NULL, 0,
(char *) &status_value, 1)) { // store received value in status_value
tr_error("Reading Status Register failed");
}
if ((status_value & SPINAND_STATUS_BIT_WEL) == 0) {
tr_error("_set_write_enable failed - status register 1 value: %u", status_value);
break;
}
status = 0;
} while (false);
return status;
}
int MX3x_SPINANDBlockDevice::_set_conti_read_enable()
{
uint8_t secur_reg = 0;
if (false == _is_mem_ready()) {
tr_error("Device not ready, set quad enable failed");
return -1;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Security Register failed");
}
secur_reg |= SPINAND_SECURE_BIT_CONT;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Security Register failed");
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Security Register failed");
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, set quad enable failed");
return -1;
}
return 0;
}
int MX3x_SPINANDBlockDevice::_set_conti_read_disable()
{
uint8_t secur_reg = 0;
if (false == _is_mem_ready()) {
tr_error("Device not ready, set quad enable failed");
return -1;
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Security Register failed");
}
secur_reg &= ~SPINAND_SECURE_BIT_CONT;
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_SET_FEATURE, FEATURES_ADDR_SECURE_OTP,
(char *) &secur_reg, 1, NULL, 0)) {
tr_error("Writing Security Register failed");
}
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_SECURE_OTP,
NULL, 0, (char *) &secur_reg, 1)) {
tr_error("Reading Security Register failed");
}
if (false == _is_mem_ready()) {
tr_error("Device not ready, set quad enable failed");
return -1;
}
return 0;
}
int MX3x_SPINANDBlockDevice::_conti_read_exit()
{
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_RESET, QSPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("Sending WREN command FAILED");
}
return 0;
}
bool MX3x_SPINANDBlockDevice::_is_mem_ready()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
uint8_t status_value = 0;
int retries = 0;
bool mem_ready = true;
do {
rtos::ThisThread::sleep_for(1ms);
retries++;
//Read Status Register 1 from device
if (QSPI_STATUS_OK != _qspi_send_general_command(SPINAND_INST_GET_FEATURE, FEATURES_ADDR_STATUS,
NULL, 0,
(char *) &status_value, 1)) { // store received value in status_value
tr_error("Reading Status Register failed");
}
} while ((status_value & SPINAND_STATUS_BIT_WIP) != 0 && retries < IS_MEM_READY_MAX_RETRIES);
if ((status_value & SPINAND_STATUS_BIT_WIP) != 0) {
tr_error("_is_mem_ready FALSE: status value = 0x%x ", status_value);
mem_ready = false;
}
return mem_ready;
}