forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dijkstra.js
80 lines (66 loc) · 2.9 KB
/
dijkstra.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import PriorityQueue from '../../../data-structures/priority-queue/PriorityQueue';
/**
* @typedef {Object} ShortestPaths
* @property {Object} distances - shortest distances to all vertices
* @property {Object} previousVertices - shortest paths to all vertices.
*/
/**
* Implementation of Dijkstra algorithm of finding the shortest paths to graph nodes.
* @param {Graph} graph - graph we're going to traverse.
* @param {GraphVertex} startVertex - traversal start vertex.
* @return {ShortestPaths}
*/
export default function dijkstra(graph, startVertex) {
// Init helper variables that we will need for Dijkstra algorithm.
const distances = {};
const visitedVertices = {};
const previousVertices = {};
const queue = new PriorityQueue();
// Init all distances with infinity assuming that currently we can't reach
// any of the vertices except the start one.
graph.getAllVertices().forEach((vertex) => {
distances[vertex.getKey()] = Infinity;
previousVertices[vertex.getKey()] = null;
});
// We are already at the startVertex so the distance to it is zero.
distances[startVertex.getKey()] = 0;
// Init vertices queue.
queue.add(startVertex, distances[startVertex.getKey()]);
// Iterate over the priority queue of vertices until it is empty.
while (!queue.isEmpty()) {
// Fetch next closest vertex.
const currentVertex = queue.poll();
// Iterate over every unvisited neighbor of the current vertex.
currentVertex.getNeighbors().forEach((neighbor) => {
// Don't visit already visited vertices.
if (!visitedVertices[neighbor.getKey()]) {
// Update distances to every neighbor from current vertex.
const edge = graph.findEdge(currentVertex, neighbor);
const existingDistanceToNeighbor = distances[neighbor.getKey()];
const distanceToNeighborFromCurrent = distances[currentVertex.getKey()] + edge.weight;
// If we've found shorter path to the neighbor - update it.
if (distanceToNeighborFromCurrent < existingDistanceToNeighbor) {
distances[neighbor.getKey()] = distanceToNeighborFromCurrent;
// Change priority of the neighbor in a queue since it might have became closer.
if (queue.hasValue(neighbor)) {
queue.changePriority(neighbor, distances[neighbor.getKey()]);
}
// Remember previous closest vertex.
previousVertices[neighbor.getKey()] = currentVertex;
}
// Add neighbor to the queue for further visiting.
if (!queue.hasValue(neighbor)) {
queue.add(neighbor, distances[neighbor.getKey()]);
}
}
});
// Add current vertex to visited ones to avoid visiting it again later.
visitedVertices[currentVertex.getKey()] = currentVertex;
}
// Return the set of shortest distances to all vertices and the set of
// shortest paths to all vertices in a graph.
return {
distances,
previousVertices,
};
}