-
Notifications
You must be signed in to change notification settings - Fork 9
/
ch_KvAdistp.mod
122 lines (99 loc) · 2.11 KB
/
ch_KvAdistp.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
TITLE A-type potassium channel (voltage dependent)
COMMENT
A-type potassium channel (voltage dependent)
Ions: k
Style: quasi-ohmic
From: Klee Ficker and Heinemann
Updates:
2014 December (Marianne Bezaire): documented
1997 June (Michele Migliore): modified to account for Dax A Current
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
celsius
v (mV)
gmax=.008 (mho/cm2)
vhalfn=-1 (mV)
vhalfl=-56 (mV)
a0l=0.05 (/ms)
a0n=.1 (/ms)
zetan=-1.8 (1)
zetal=3 (1)
gmn=0.39 (1)
gml=1 (1)
lmin=2 (mS)
nmin=0.2 (mS)
pw=-1 (1)
tq=-40
qq=5
q10=5
qtl=1
ek
e
}
NEURON {
SUFFIX ch_KvAdistp :kad
USEION k READ ek WRITE ik
RANGE gmax, myi, e, g
GLOBAL ninf,linf,taul,taun,lmin
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
myi (mA/cm2)
ninf
linf
taul
taun
g
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gmax*n*l
ik = g*(v-ek)
myi = ik
}
INITIAL {
rates(v)
n=ninf
l=linf
}
FUNCTION alpn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states {
rates(v)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-24)/10)
a = alpn(v)
ninf = 1/(1 + a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmin) {taun=nmin}
a = alpl(v)
linf = 1/(1+ a)
taul = 0.26*(v+50)/qtl
if (taul<lmin/qtl) {taul=lmin/qtl}
}