-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinterpKernel.lua
78 lines (63 loc) · 2.06 KB
/
interpKernel.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
-- make interpolation kernel, which can be linear, spline, dyadic spline or spatial
require 'image'
kernels_path = '/misc/vlgscratch3/LecunGroup/mbhenaff/spectralnet/interp_kernels/'
-- for all except spatial2D, N is the input size, M is the output size
-- for spatial2D, we are assuming inputs are NxN images and outputs are MxM
function interpKernel(N, M, type)
if type == 'spline' then
return torch.load(kernels_path .. '/spline_kernel_' .. N .. '_' .. M .. '.th'):float()
elseif type == 'spline_border' then
return torch.load(kernels_path .. '/spline_border_' .. N .. '_' .. M .. '.th'):float()
elseif type == 'dyadic_spline' then
return torch.load(kernels_path .. '/dyadic_spline_kernel_' .. N .. '_' .. M .. '.th'):float()
elseif type == 'spatial2D' then
return torch.load(kernels_path .. '/spatial_kernel_' .. N .. '_' .. M .. '.th'):float()
elseif type == 'bilinear' then
if N == M then
return torch.eye(N)
else
local out = torch.zeros(N,M)
local aux = torch.zeros(N)
local x = torch.linspace(0,1,N)
local y = torch.linspace(0,1,M)
for i = 1,N do
aux:zero()
aux[i] = 1
out[{i,{}}]:copy(linterp(x,aux,y))
end
return out:float()
end
else
error('unrecognized type')
end
end
-- linear interpolation
function linterp(x1,y1,x2)
local y2 = torch.Tensor(x2:nElement())
if torch.max(x2) > torch.max(x1) or torch.min(x2) < torch.min(x1) then
error('range of x2 should be included in range of x1')
end
for i=1,x2:nElement() do
local indx = torch.find(torch.le(x1,x2[i]))
local j = torch.max(indx)
if j == x1:nElement() then
y2[i] = y1[x1:nElement()]
else
local slope = (y1[j+1]-y1[j])/(x1[j+1]-x1[j])
y2[i] = y1[j] + slope*(x2[i]-x1[j])
end
end
return y2
end
function torch.find(x)
if x:nDimension() > 1 then
error('torch.find is only defined for 1D tensors')
end
local indx={}
for i=1,(#x)[1] do
if x[i]>0 then
table.insert(indx,i)
end
end
return torch.IntTensor(indx)
end