-
Notifications
You must be signed in to change notification settings - Fork 3
/
finetune.py
264 lines (220 loc) · 9.89 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import re
import os
import sys
import glob
import math
import logging
import argparse
import numpy as np
from typing import Dict, List, Optional, Sequence
from dataclasses import dataclass, field
import torch
import datasets
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, Trainer, HfArgumentParser, TrainingArguments
from datasets import load_dataset, concatenate_datasets, DatasetDict
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
prepare_model_for_int8_training,
)
from utils.prompter import Prompter
logger = logging.getLogger(__name__)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
@dataclass
class ModelArguments:
# Base model parameters
model_name_or_path: Optional[str] = field(default=None)
load_in_8bit: bool = field(
default=False, metadata={"help": "Whether to convert the loaded model into mixed-8bit quantized model."}
)
# LoRA parameters
lora_r: int = field(default=8, metadata={"help": "Lora rank."})
lora_alpha: int = field(default=16, metadata={"help": "Lora alpha."})
lora_dropout: float = field(default=0.05, metadata={"help": "Lora dropout."})
lora_target_modules: str = field(default="q_proj,v_proj", metadata={"help": "Names of the modules to apply Lora to."})
@dataclass
class DataArguments:
data_path: Optional[str] = field(default='MBZUAI/Bactrian-X', metadata={"help": "Path to the training file."})
model_max_length: Optional[int] = field(
default=1024, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}
)
preprocessing_num_workers: Optional[int] = field(
default=None, metadata={"help": "The number of processes to use for the preprocessing."}
)
val_set_size: Optional[int] = field(default=2000, metadata={"help": "The validation set size. For loss checking."})
@dataclass
class BactrianTrainingArguments(TrainingArguments):
optim: str = field(default="adamw_torch", metadata={"help": "Optimizer to use."})
fp16: bool = field(
default=True, metadata={"help": "Whether to use fp16 16-bit (mixed) precision training instead of 32-bit training."}
)
lang: str = field(default="zh", metadata={"help": "The language or language list separated by `,`, dataset will be downlaoded from HF Hub."})
template_dir: str = field(default="./templates", metadata={"help": "Prompt template dir."})
prompt_template_name: str = field(default="bactrian", metadata={"help": "Prompt template file to use."})
evaluation_strategy: str = field(default="steps", metadata={"help": ""})
save_strategy: str = field(default="steps", metadata={"help": ""})
wandb_project: str = field(default="bactrian", metadata={"help": "Weight & Bias (W&B) project name."})
# Copied from https://github.com/bofenghuang/stanford_alpaca/blob/eb5b171d9b103a12a8e14e0edca9cbc45fe1d512/train.py#L75-L95
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def train():
# HF parser
parser = HfArgumentParser((ModelArguments, DataArguments, BactrianTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Model parameters {model_args}")
logger.info(f"Training/evaluation parameters {training_args}")
prompter = Prompter(training_args.prompt_template_name, training_args.template_dir)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
if 'wandb' in training_args.report_to:
os.environ["WANDB_PROJECT"] = training_args.wandb_project
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
torch_dtype=torch.float16,
load_in_8bit=model_args.load_in_8bit,
device_map=device_map,
)
# TODO: better handle
tokenizer_class = LlamaTokenizer if "llama" in model_args.model_name_or_path else AutoTokenizer
tokenizer = tokenizer_class.from_pretrained(
model_args.model_name_or_path,
padding_side="right",
use_fast=False,
)
# llama has no pad_token
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if "llama" in model_args.model_name_or_path:
tokenizer.add_special_tokens(
{
"eos_token": DEFAULT_EOS_TOKEN,
"bos_token": DEFAULT_BOS_TOKEN,
"unk_token": DEFAULT_UNK_TOKEN,
}
)
if model_args.load_in_8bit:
model = prepare_model_for_int8_training(model)
else:
model.enable_input_require_grads()
config = LoraConfig(
r = model_args.lora_r,
lora_alpha = model_args.lora_alpha,
target_modules = model_args.lora_target_modules.split(','),
lora_dropout = model_args.lora_dropout,
bias = "none",
task_type = "CAUSAL_LM",
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
# Load dataset from HF Hub
if training_args.lang != '':
all_dataset = [load_dataset(data_args.data_path, lang) for lang in training_args.lang.split(',')]
merged_dataset = concatenate_datasets(list(map(lambda x: x['train'], all_dataset)))
raw_datasets = DatasetDict({'train':merged_dataset})
# Determine model_max_length for truncation
model_max_length = data_args.model_max_length
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
user_prompt_len = len(tokenizer(user_prompt, truncation=True, max_length=model_max_length)["input_ids"])
tokenized_full_prompt = tokenizer(full_prompt + tokenizer.eos_token, truncation=True, max_length=model_max_length)
tokenized_full_prompt["labels"] = [IGNORE_INDEX] * user_prompt_len + tokenized_full_prompt["input_ids"].copy()[user_prompt_len:]
tokenized_full_prompt.pop('attention_mask')
return tokenized_full_prompt
if data_args.val_set_size > 0:
train_val_data = raw_datasets["train"].train_test_split(
test_size=data_args.val_set_size, shuffle=True, seed=42
)
else:
raise ValueError("val_set_size must large than 0.")
#with training_args.main_process_first(desc="dataset map tokenization"):
train_data = train_val_data["train"].map(
generate_and_tokenize_prompt,
num_proc=data_args.preprocessing_num_workers,
remove_columns=next(iter(raw_datasets.values())).column_names,
desc="preprocess train data set",
)
val_data = train_val_data["test"].map(
generate_and_tokenize_prompt,
num_proc=data_args.preprocessing_num_workers,
remove_columns=next(iter(raw_datasets.values())).column_names,
desc="preprocess val data set",
)
trainer = Trainer(
model = model,
train_dataset = train_data,
eval_dataset = val_data,
args = training_args,
data_collator = transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train()
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
train()