-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjumpstart.Rmd
810 lines (523 loc) · 19.5 KB
/
jumpstart.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
---
title: "A Jump-Start into R for Statistical Programmers and Analysts"
author: "Kelly McConville"
date: "10/18/2017"
output:
ioslides_presentation:
widescreen: yes
logo: swat.png
editor_options:
chunk_output_type: console
---
<style>
.gdbar img {
width: 200px !important;
height: 100px !important;
}
.gdbar {
width: 250px !important;
height: 120px !important;
}
slides > slide:not(.nobackground):before {
width: 0px;
height: 0px;
background-size: 0px 0px;
}
ul {
color: black;
}
body {
color: black;
}
h2 {
color: #8A211D;
}
a {
color: #CF872E;
text-decoration: none;
border-bottom: none;
}
a:hover {
color: #8A211D !important;
}
pre {
font-family: 'Source Code Pro', 'Courier New', monospace;
font-size: 18px;
line-height: 28px;
padding: 10px 0 10px 60px;
letter-spacing: -1px;
margin-bottom: 20px;
width: 106%;
left: -60px;
position: relative;
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;
/*overflow: hidden;*/
}
</style>
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE, tidy = TRUE, tidy.opts=list(width.cutoff=70))
options(digits=2, scipen = 3)
```
## (Optional) Pre-Webinar Downloads
* If you want to run the commands as I present them, you will need to download R and then RStudio (Both are free.).
* R: Available at the [CRAN site](https://cran.r-project.org/)
* RStudio: Available at [their website](https://www.rstudio.com/products/rstudio/download/#download)
* You will also need to install some packages. Here is the code to do so. Run this code in the console.
+ Note: We will discuss package installation during the talk.
```{r, eval=FALSE}
install.packages(c("dplyr", "ggplot2","data.table", "mosaic", "broom", "caret", "readr", "knitr"))
```
* [Materials are on github](https://github.com/mcconvil/jumpstart_R_webinar).
## Components of the Jump-Start
* Introduction to R
* Introduction the RStudio IDE
* Whirlwind tour of data analysis in R
+ Discuss a reproducible workflow.
+ Highlight some of the popular functions and packages.
* Along the way, you will receive loads of links and resources for taking the jump-start to the next level.
##What is not part of the Jump-Start
* Why R is better than package X.
+ Will briefly discuss strengths of R.
+ Want to spend our time learning R rather than talking about why you should learn R!
+ If you are interested in joining the debate, there are plenty of forums and blog posts you can visit.
+ [Like this one.](https://datacamp.wpengine.com/wp-content/uploads/2014/05/infograph.png)
+ [And this one.](http://www.theanalyticslab.nl/2017/03/18/python-r-vs-spss-sas/)
+ [Here's another one.](http://r4stats.com/articles/popularity/)
+ [One on weaknesses of R.](http://r4stats.com/articles/why-r-is-hard-to-learn/)
* Deep conversation about memory, speed, specific configurations, big data, integration with Spark...
## My Background
* R user for 12 years
* How do I use R in my research?
+ Data wrangling
+ Graphing
+ Summarizing
+ Simulations
+ Analyzing
+ Currently writing an R package of model-assisted survey estimators.
+ Writing
## My Background
* Teacher of R for 6 years
* How do I use R in my teaching?
+ To teach the whole data analysis workflow
+ To build intuition about concepts
## Assumptions about the Audience
* A programmer or analyst who is familiar with a different statistical program.
* Have little to no experience with R.
* Have decided it is worthwhile to learn about R.
+ Possibly on the fence as to whether or not to switch to R.
## Strengths of R
* Free and open source
* Platform independent
* Fosters a reproducible workflow
* Active community of users and programmers making R better
## Coupling R with RStudio
* RStudio is an integrated development environment (IDE) for the R statistical language.
* The common analogy:

## Coupling R with RStudio
* RStudio is an integrated development environment (IDE) for the R statistical language.
* The common analogy:

## Coupling R with RStudio
* Let's acquaint ourselves with the different components of RStudio.
## Highlights of RStudio
* Lower Right:
+ Files, Plots, Packages, Help
* Upper Right:
+ Environment, History
* Lower Left: Console
* Upper Left: Text editor
* Nice Features:
+ Importing Data
+ Tab completion
+ Integration with [github](https://github.com/)
+ [Fabulous guide](http://happygitwithr.com/)
## Getting Help
* If you know the function's exact name:
```{r, eval=FALSE, tidy = FALSE}
?lm
```
* If you know specific keywords:
```{r, eval=FALSE}
help.search('linear model')
```
* If you have an idea but not the specific word/function, I recommend trying Google or Stack Overflow.
## Resources
* [R FAQ](https://cran.r-project.org/doc/FAQ/R-FAQ.html)
* [DataCamp](https://www.datacamp.com/)
* RStudio:
+ [CheatSheets](https://www.rstudio.com/resources/cheatsheets/)
+ [Online Learning](https://www.rstudio.com/online-learning/)
+ [Webinars](https://www.rstudio.com/resources/webinars/)
* Join a local user group:
+ [R user groups](https://jumpingrivers.github.io/meetingsR/r-user-groups.html)
+ [R Ladies](https://rladies.org/)
## Base R versus the [Tidyverse](https://www.tidyverse.org/)
* **Question**: Should I use a built-in function or a function that exists in a package?
* How do you use a function from an R package?
+ First install the package:
```{r, eval=FALSE}
#Only do once
install.packages("mosaic")
```
* Then load the package every time you want to use its functions:
```{r}
library(mosaic)
favstats(1:10)
```
## R Objects: [Data Types](http://www.statmethods.net/input/datatypes.html)
* The common data objects in R are:
+ Vectors: one dimensional array
+ Types: numeric, integer, character, factor, logical
+ Matrices: two dimensional array
+ Each column must have the same type
+ **Data Frames**: two dimensional array
+ Columns may have different types
+ Lists
+ Items don't need to be the same size.
## Read in the data
* Option 1: Use the "Import Dataset" button
* Option 2: Console
```{r}
#Base R
eruptions <- read.csv("GVP_Eruption_Results.csv")
#Tidyverse
library(readr)
eruptions <- read_csv("GVP_Eruption_Results.csv")
#data.table
library(data.table)
eruptions <- fread("GVP_Eruption_Results.csv")
```
* <- is the "assignment operator".
* The *eruptions* dataset is all documented eruptions and is from the [Smithsonian Institution Global Volcanism Program.](http://volcano.si.edu/)
## Read in the data
* You can read in many different file formats into R!
+ Excel
+ Text file
+ SPSS
+ SAS
+ STATA
+ ...
## Read in the data
* Main differences between base, *readr*, and *data.table*:
+ All read a flat file into a data frame.
+ *readr* reads in as a [tibble](https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html).
+ *data.table* reads in as a [data.table](https://www.rdocumentation.org/packages/data.table/versions/1.10.4/topics/data.table-package).
+ readr and data.table don't automatically convert characters to factors.
+ [Why?](https://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/)
+ Time: base > readr > data.table
```{r, echo=FALSE}
read1 <- system.time(eruptions <- read.csv("GVP_Eruption_Results.csv")
)
read2 <- system.time(eruptions <- read_csv("GVP_Eruption_Results.csv")
)
read3 <- system.time(eruptions <- fread("GVP_Eruption_Results.csv")
)
library(knitr)
kable(data.frame(read.csv=read1[3], read_csv=read2[3], fread=read3[3]), format = "markdown", padding = 1)
```
##Data Exploration
```{r}
#Class
class(eruptions)
#Convert to a data frame
eruptions <- data.frame(eruptions)
```
```{r, eval=FALSE}
View(eruptions)
```
##Data Exploration
```{r}
#Look at a few observations
head(eruptions)
```
##Data Exploration
```{r}
names(eruptions)
dim(eruptions)
```
##Data Exploration
```{r}
str(eruptions)
```
## Data Wrangling: Some base R functions
```{r}
#Subsetting: Select rows
eruptions[1,]
```
## Data Wrangling: Some base R functions
```{r}
#Subsetting: Select columns
eruptions[,2]
```
```{r, eval=FALSE}
#0ther ways of selecting a column
eruptions$Volcano_Name
eruptions[,"Volcano_Name"]
```
## Data Wrangling: Some base R functions
```{r}
#More subsetting examples
eruptions[1,2]
eruptions[-(2:11097),2]
eruptions[200:202, c(2,9)]
```
## Data Wrangling: Some base R functions
```{r}
#Subset: select columns
eruptions2 <- eruptions[,c("Eruption_Category", "VEI", "Start_Year", "End_Year") ]
#Subset: select rows
eruptions3 <- subset(eruptions2, Eruption_Category == "Confirmed Eruption" & Start_Year > 1900)
#Add column which is a function of existing columns
eruptions3$Length <- eruptions3$End_Year - eruptions3$Start_Year
```
## Data Wrangling: Some base R functions
```{r}
#Arrange by Length
head(eruptions3[order(eruptions3$Length, decreasing = TRUE),], 10)
```
## Data Wrangling: Some base R functions
```{r}
#Perform operation by specified grouping
length(eruptions3$Eruption_Category)
eruptions4 <- aggregate(Eruption_Category~Start_Year, data = eruptions3, FUN=length)
eruptions4
```
## Data Wrangling: Tidyverse with [dplyr](http://dplyr.tidyverse.org/)
```{r}
library(dplyr)
#Subset: select columns
eruptions2 <- select(eruptions, Eruption_Category, VEI, Start_Year, End_Year)
#Subset: select rows
eruptions3 <- filter(eruptions2, Eruption_Category == "Confirmed Eruption", Start_Year > 1900)
#Add column which is a function of existing columns
eruptions4 <- mutate(eruptions3, Length = End_Year - Start_Year)
```
## Data Wrangling: Tidyverse with [dplyr](http://dplyr.tidyverse.org/)
```{r}
#Arrange by Length
head(arrange(eruptions4, desc(Length)), 10)
```
## Data Wrangling: Tidyverse with [dplyr](http://dplyr.tidyverse.org/)
```{r}
#Aggregate by values of a variable
eruptions5 <- group_by(eruptions4, Start_Year)
#Perform operation by specified grouping
eruptions6 <- summarize(eruptions5,count=n(), avg_VEI=mean(VEI, na.rm=TRUE), maxLength = max(Length, na.rm=TRUE))
eruptions6
```
## Data Wrangling: Tidyverse with dplyr and [magrittr](https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html)
* %>% called a pipe.
+ Interpret as "and then"
```{r, tidy = FALSE}
library(dplyr) #Automatically loads magrittr
yearly <- eruptions %>%
select(Eruption_Category, VEI, Start_Year, End_Year) %>%
filter(Eruption_Category=="Confirmed Eruption", Start_Year>=1900) %>%
mutate(Length = End_Year - Start_Year) %>%
group_by(Start_Year) %>%
summarize(count=n(), avg_VEI=mean(VEI, na.rm=TRUE), maxLength = max(Length, na.rm=TRUE))
```
## Data Wrangling: Tidyverse with dplyr and [magrittr](https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html)
```{r}
yearly
```
## Data Wrangling: [data.table](https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html)
* Very flexible and fast.
+ If you are dealing with bigger datasets, it may be the best option for your data wrangling needs.
+ It is beyond the scope of today's webinar.
+ [Here's a cheat sheet.](https://datacamp-community.s3.amazonaws.com/6fdf799f-76ba-45b1-b8d8-39c4d4211c31)
## Data Visualization: Base R
```{r}
plot(x = yearly$Start_Year, y = yearly$count, xlab = "Start Year", ylab = "Number of Eruptions")
```
## Data Visualization: Base R
```{r}
hist(x = yearly$count, main = "Yearly Counts", freq = FALSE, xlab = "Yearly Number of Eruptions")
```
## Data Visualization: Tidyverse with [ggplot2](http://ggplot2.tidyverse.org/reference/)
* Based on the [*Grammar of Graphics*](https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448)
* Big idea: Map **data** to the **aes**thetic attributes (e.g. location, size, shape, color) of **geom**etric objects (e.g. points, lines, bars).
```{r, eval=FALSE}
#base plot with data and aesthetics defined
#added geometric layers
#layers for labels, faceting, and other formatting
ggplot(data = DATA, aes(MAPPING)) +
geom_OBJECT() +
scale_*_*() + #Optional
labs() #Optional
```
## Data Visualization: Tidyverse with [ggplot2](http://ggplot2.tidyverse.org/reference/)
```{r, fig.height = 3.5}
library(ggplot2)
ggplot(data = yearly, aes(x=Start_Year, y=count)) +
geom_point() +
labs(x="Starting Year", y="Number of Eruptions")
```
## Data Visualization: Tidyverse with [ggplot2](http://ggplot2.tidyverse.org/reference/)
```{r, fig.height = 3.5}
ggplot(data = yearly, aes(x=Start_Year, y=count, size = avg_VEI)) +
geom_point() +
labs(x="Starting Year", y="Number of Eruptions", size = "Average Size")
```
## Data Visualization: Tidyverse with [ggplot2](http://ggplot2.tidyverse.org/reference/)
```{r}
ggplot(data = yearly, aes(x=count)) +
geom_histogram() +
labs(x="Number of Eruptions")
```
## Data Visualization
* Both [base graphics](http://publish.illinois.edu/johnrgallagher/files/2015/10/BaseGraphicsCheatsheet.pdf) and [ggplot2](https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf) have LOTS of features not discussed here.
* In the Tidyverse versus base R debate, graphing is a very popular point of contention.
* [Pro base R argument](https://simplystatistics.org/2016/02/11/why-i-dont-use-ggplot2/)
* [Pro ggplot2 argument](http://varianceexplained.org/r/teach_ggplot2_to_beginners/)
* [Comparison of the two](https://flowingdata.com/2016/03/22/comparing-ggplot2-and-r-base-graphics/)
## Modeling
* R has a vast array of available modeling techniques.
```{r, tidy = FALSE}
#Wrangle data
eruptions <- eruptions %>%
filter(Start_Year>=2000) %>%
mutate(Length = End_Year - Start_Year) %>%
select(Eruption_Category, VEI, Length, Latitude, Longitude, Start_Year) %>%
na.omit
```
* Disclaimer: With the missing values, censoring, and sampling biases, we should do more wrangling than this before conducting inference.
## Modeling
* Example: Linear Regression
```{r}
mod_lm <- lm(formula = Length~Start_Year + VEI*Eruption_Category, data = eruptions)
```
## Modeling {.smaller}
```{r}
summary(mod_lm)
```
## Modeling {.smaller}
```{r, echo = FALSE}
summary(mod_lm)
```
## Modeling
```{r}
#Tidy output
library(broom)
tidy(mod_lm)
```
## Modeling
```{r}
#Tidy output
glance(mod_lm)
```
## Modeling
```{r}
class(tidy(mod_lm))
class(summary(mod_lm))
```
* From help file of *summary()*:
> "summary is a generic function used to produce result summaries of the results of various model fitting functions. The function invokes particular methods which depend on the class of the first argument."
## Modeling
* Example: Generalized Linear Models
```{r}
mod_glm <- glm(formula = as.factor(Eruption_Category)~Start_Year + poly(x = VEI, degree = 2), family = "binomial", data = eruptions)
```
## Modeling
* Example: Generalized Linear Models
```{r}
tidy(mod_glm)
```
## Modeling
* Example: ANOVA Models
```{r}
mod_aov <- aov(Length~Eruption_Category, data = eruptions)
tidy(mod_aov)
```
## Predictive Modeling with [caret](https://topepo.github.io/caret/index.html)
* Classification and Regression Training
* Data splitting (train/test datasets)
* Modeling
* Tuning parameters
* Variable Importance
* Key idea: Common structure for building and comparing predictive models.
+ Allows for easy comparisons across different types of models.
* Showcased in [*Applied Predictive Modeling*](http://appliedpredictivemodeling.com/) by Max Kuhn and Kjell Johnson.
## Predictive Modeling with [caret](https://topepo.github.io/caret/index.html)
* Example: [Elastic-Net Regression](https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html)
* Model:
$$
\begin{aligned}
y_i &= \beta_o + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \epsilon_i \\
&=\boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i \nonumber
\end{aligned}
$$
* Criteria for Coefficients:
$$
\boldsymbol{\widehat{\beta}} = \underset{\boldsymbol{\beta}}{\arg\min} \left\{ \sum_{i \in s} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \left[ \alpha \sum_{j=1}^p \left|\beta_j\right| + (1-\alpha) \sum_{j=1}^p \beta_j^2\right] \right\}
$$
## Predictive Modeling with [caret](https://topepo.github.io/caret/index.html)
```{r, cache = TRUE}
library(caret)
#Set-up grid of possible lambda and alpha values
lam <- 10^seq(1,-2, length.out = 50)
alpha <- 0:10/10
grd <- expand.grid(lambda = lam, alpha = alpha)
#Set-up CV options
cv_opts <- trainControl(method = "CV", number = 10)
#Train the model for each grid point
cvfits <- train(Length~., data = eruptions, method = "glmnet", tuneGrid = grd, trControl = cv_opts, standardize = TRUE)
```
## Predictive Modeling with [caret](https://topepo.github.io/caret/index.html)
```{r, cache = TRUE}
plot(cvfits)
#Optimal parameters
cvfits$bestTune
```
## Predictive Modeling with [caret](https://topepo.github.io/caret/index.html)
```{r, cache = TRUE}
#Non-zero coefficients
bestfit <- cvfits$finalModel
coef(bestfit, s = cvfits$bestTune$lambda)
```
## Report Generation via R Markdown
* Documents that weave together narrative and R code/output.
* Can create [reports](http://rmarkdown.rstudio.com/), [presentations](http://rmarkdown.rstudio.com/ioslides_presentation_format.html), [journal articles](https://github.com/rstudio/rticles), and even [books](https://bookdown.org/).
+ This presentation was made with R Markdown.
* Output formats: HTML, pdf, Word.
* Let's see how to start a new R Markdown document.
## Topics We Didn't Get to Today
* [*for* loops, *while* loops](https://www.datacamp.com/community/tutorials/tutorial-on-loops-in-r), [*ifelse*](https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/ifelse)
* The family of [*apply* functions](https://www.datacamp.com/community/tutorials/r-tutorial-apply-family)
* Many of the basic functions:
```{r}
sd(eruptions$VEI)
table(eruptions$Eruption_Category)
```
## Topics We Didn't Get to Today
* Hypothesis tests: *t.test*
```{r}
t.test(VEI~Eruption_Category, data = eruptions)
```
## Topics We Didn't Get to Today
* Generating random observations:
```{r}
rnorm(n = 3, mean = 5, sd = 1)
runif(n = 6, min = 0, max = 1)
```
* Merging files
+ Base r [*merge*](https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/merge)
+ dplyr [*joins*](https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html)
* Writing [functions](http://adv-r.had.co.nz/Functions.html) and [R packages](http://r-pkgs.had.co.nz/)
## Resources
* [R FAQ](https://cran.r-project.org/doc/FAQ/R-FAQ.html)
* [DataCamp](https://www.datacamp.com/)
* RStudio:
+ [CheatSheets](https://www.rstudio.com/resources/cheatsheets/)
+ [Online Learning](https://www.rstudio.com/online-learning/)
+ [Webinars](https://www.rstudio.com/resources/webinars/)
* Join a local user group:
+ [R user groups](https://jumpingrivers.github.io/meetingsR/r-user-groups.html)
+ [R Ladies](https://rladies.org/)
## Announcement and Questions
* If you want to learn more about building statistical/machine learning models in R, consider attending my short course, [*Statistical Learning Methods in R*](http://ww2.amstat.org/meetings/csp/2018/onlineprogram/index.cfm?SessionTypeID=147), on February 15, 2018 at the [Conference on the Statistical Practice](http://ww2.amstat.org/meetings/csp/2018/) in [Portland, OR](http://www.washingtonpost.com/sf/style/2015/06/30/the-search-for-americas-best-food-cities-portland-ore/).
* Let's *put on the breaks* and take time for questions.
+ If you have a question, type it into the Question Box.