-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
223 lines (169 loc) · 6.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
################################################################################
# This file is part of the paper:
# "A Hybrid Compact Neural Architecture for Visual Place Recognition,"
# in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 993-1000,
# April 2020, doi: 10.1109/LRA.2020.2967324.
# Project page: https://mchancan.github.io/projects/FlyNet
#
# Copyright (c) 2020, Marvin Chancán
# Author:
# Marvin Chancán (mchancanl@uni.pe)
#
# This code is under the MIT License for academic purposes
# (refer to the LICENSE file for details). For commercial
# usage, please contact us via mchancanl@uni.pe
#
###############################################################################
from __future__ import print_function, division
import cv2
from skimage import io
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_dir = 'dataset/Nordland-Subset-100/'
train_dir = data_dir + 'summer/' # train
test_dir = data_dir + 'fall/' # test
test_dir2 = data_dir + 'winter/' # test_2
num_classes = 100
img_w = 64
img_h = 32
img_c = 1
# Loading the data
def get_images(img_dir, num_imgs):
print('Loading images...')
x = []
for i in range(num_imgs):
img = cv2.imread(img_dir+'/'+str(i)+'.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, (img_w,img_h),interpolation = cv2.INTER_AREA)
x += [img.reshape(img_h,img_w,img_c)]
return np.asarray(x)/255
x_train = get_images(train_dir, num_classes)
print('Train images shape:', x_train.shape)
x_test = get_images(test_dir, num_classes)
print('Test_1 images shape:', x_test.shape)
x_test2 = get_images(test_dir2, num_classes)
print('Test_2 images shape:', x_test2.shape)
# Nordland dataset class
class NordlandDataset(Dataset):
"""Nordland dataset."""
def __init__(self, data):
"""
Args:
data (string): Directory with all the images.
"""
self.num_images = data.shape[0]
self.data = data
def __len__(self):
return self.num_images
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image = self.data[idx]
ids = np.array(idx)
image = image.transpose((2, 0, 1))
return torch.from_numpy(image), torch.from_numpy(ids)
# Hyper parameters
num_epochs = 200
batch_size = num_classes
learning_rate = 0.001
hidden_size = 64
iter_display = 1
input_size = img_w*img_h
test_dataset = NordlandDataset(data=x_test)
test_loader = DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=4)
test_dataset2 = NordlandDataset(data=x_test2)
test_loader2 = DataLoader(test_dataset2, batch_size=batch_size,
shuffle=False, num_workers=4)
train_dataset = NordlandDataset(data=x_train)
dataloader = DataLoader(train_dataset, batch_size=batch_size,
shuffle=False, num_workers=4)
# FlyNet model, including a hidden-layer (FNA) and a fully-connected (FC) output layer
class FlyNet(nn.Module):
def __init__(self, input_size=input_size, hidden_size=hidden_size, num_classes=num_classes):
super(FlyNet, self).__init__()
self.sampling_ratio = 0.1 # 10% random, sparse connectivity
self.wta_length = int(hidden_size/2) # 50% WTA
self.fna_weight = torch.Tensor(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, num_classes, bias=False)
self.reset_fna_weight()
def reset_fna_weight(self):
# Defining W: binary, sparse matrix
self.fna_weight = (nn.init.sparse_(self.fna_weight,
sparsity=1-self.sampling_ratio)!=0).float().to(device)
def fna(self, x):
firing_rates = torch.matmul(x,self.fna_weight)
wta_threshold = torch.topk(firing_rates, self.wta_length, dim=1)[0][:,-1].reshape(num_classes,1)
return (firing_rates>=wta_threshold).float()
def forward(self, x):
out = self.fna(x)
out = self.fc(out)
return out
model = FlyNet().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(dataloader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(dataloader):
images = images.view(images.size(0), -1).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images.float())
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Compute accuracy
_, argmax = torch.max(outputs, 1)
accuracy = (labels == argmax.squeeze()).float().mean()
if (epoch+1) % iter_display == 0:
print ('Epoch [{}/{}], train_loss: {:.4f}, train_acc: {:.2f}'
.format(epoch+1, num_epochs, loss.item(), accuracy.item()))
# Test the model
def eval_model(model,data_loader):
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in data_loader:
images = images.view(images.size(0), -1).to(device)
labels = labels.to(device)
outputs = model(images.float())
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy: {} %'.format(100 * correct / total))
return outputs.data.cpu().numpy().argmax(axis=1)
y0 = eval_model(model, dataloader)
y1 = eval_model(model, test_loader)
y2 = eval_model(model, test_loader2)
# Plot the resutls
plt.figure(figsize=(15,6))
num_samples = 5
samples_per_class = 3
tol = 11
idxs = np.random.choice(num_classes, num_samples, replace=False)
for cls in range(num_samples):
idx = idxs[cls]
for i in range(samples_per_class):
plt_idx = i * num_samples + cls + 1
plt.subplot(samples_per_class, num_samples, plt_idx)
if i == 0:
plt.imshow(io.imread(train_dir+f'{y0[idx]}.png'))
plt.title(f'{y0[idx]}', color='blue' if abs(idx-y0[idx])<tol else 'red')
elif i == 1:
plt.imshow(io.imread(test_dir+f'{y1[idx]}.png'))
plt.title(f'{y1[idx]}', color='blue' if abs(idx-y1[idx])<tol else 'red')
else:
plt.imshow(io.imread(test_dir2+f'{y2[idx]}.png'))
plt.title(f'{y2[idx]}', color='blue' if abs(idx-y2[idx])<tol else 'red')
plt.axis('off')
plt.tight_layout()
plt.savefig('results/demo_flynet_nordland.jpg', dpi = 400)