-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfindExample.m
41 lines (32 loc) · 1.13 KB
/
findExample.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function [feature,label, rects] = findExample(num,w,b,iter,ubAnno)
rects=[];
for i=1:93
ubs=ubAnno{i};
im = imread(sprintf('%s/trainIms/%04d.jpg', HW2_Utils.dataDir, i));
tem=HW2_Utils.detect(im,w,b,0);
for j=1:size(tem,2)
badIdx(1,j) = or(tem(3,j) > size(im,2), tem(4,j) > size(im,1));
end
tem = tem(:,~badIdx);
badIdx=[];
for k=1:size(ubs,2)
overlap = HW2_Utils.rectOverlap(tem, ubs(:,k));
tem = tem(:, overlap < 0.3);
end
rects=[rects,[tem;i*ones(1,size(tem,2))]];
% disp(['detecting training picture:',num2str(i)]);
end
rects=sortrows(rects',-5)';
rects=int64(rects);
fea_HOG=[];
for i=1:num
im = imread(sprintf('./data/trainIms/%04d.jpg',rects(6,i)));
imReg = im(rects(2,i):rects(4,i), rects(1,i):rects(3,i),:);
imReg = imresize(imReg, HW2_Utils.normImSz);
fea_HOG{i}=HW2_Utils.cmpFeat(rgb2gray(imReg));
end
n=size(fea_HOG,2);
fea_HOG = cat(2, fea_HOG{:});
feature=HW2_Utils.l2Norm(fea_HOG);
label=-ones(n,1);
end