-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathevalObjectDetection3d.py
1279 lines (1039 loc) · 48 KB
/
evalObjectDetection3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
#
# The evaluation script for Cityscapes 3D object detection (https://arxiv.org/abs/2006.07864)
# We use this script to evaluate your approach on the test set.
# You can use the script to evaluate on the validation set.
#
# The evaluation script expects one json annotation file per image with the format:
# {
# "objects": [
# {
# "2d": {
# "modal": [xmin, ymin, w, h],
# "amodal": [xmin, ymin, w, h]
# },
# "3d": {
# "center": [x, y, z],
# "dimensions": [length, width, height],
# "rotation": [q1, q2, q3, q4],
# },
# "label": str,
# "score": float
# }
# ]
# }
#
# Note: ["2d"]["modal"] and ["2d"]["amodal"] values are
# clipped to the image dimensions.
#
# Note: ["2d"]["modal"] is optional. If not provided,
# ["2d"]["amodal"] is used for both type of boxes.
#
# Note: For images without a single predicted box, you still need to provide
# a json file with content: {"objects": []}
# python imports
import coloredlogs
import logging
import numpy as np
import json
import os
import argparse
from typing import (
List,
Tuple
)
from pyquaternion import Quaternion
from tqdm import tqdm
# keep compatibility for python2
from collections import OrderedDict
from cityscapesscripts.helpers.annotation import (
CsBbox3d,
CsIgnore2d
)
from cityscapesscripts.helpers.box3dImageTransform import (
Box3dImageTransform,
Camera
)
from cityscapesscripts.evaluation.objectDetectionHelpers import (
EvaluationParameters,
getFiles,
calcIouMatrix,
calcOverlapMatrix
)
from cityscapesscripts.evaluation.objectDetectionHelpers import (
MATCHING_MODAL,
MATCHING_AMODAL
)
logger = logging.getLogger('EvalObjectDetection3d')
logging.basicConfig(filename='eval.log',
filemode='w',
format='%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S')
coloredlogs.install(level='INFO')
class Box3dEvaluator:
"""The Box3dEvaluator object contains the data as well as the parameters
for the evaluation of the dataset.
:param eval_params: evaluation params including max depth, min iou etc.
:type eval_params: EvaluationParameters
:param gts: all GT annotations per image
:type gts: dict
:param preds: all GT annotations per image
:type preds: dict
:param ap: data for Average Precision (AP) calculation
:type ap: dict
:param results: evaluation results
:type results: dict
"""
def __init__(
self,
evaluation_params # type: EvaluationParameters
):
# type: (...) -> None
self.eval_params = evaluation_params
# dict containing the GTs per image
self.gts = {}
# dict containing the Camera object per image
self.cameras = {}
# dict containing the predictions per image
self.preds = {}
# dict containing information for AP per class
self.ap = {}
# dict containing all required results
self.results = OrderedDict()
# internal dict keeping additional statistics
self._stats = OrderedDict()
# the actual confidence thresholds
self._conf_thresholds = np.arange(
0.0, 1.01, 1.0 / self.eval_params.num_conf
)
# the actual depth bins
self._depth_bins = range(0, self.eval_params.max_depth + 1, self.eval_params.step_size)
def reset(self):
# type: (...) -> None
"""Resets state of this instance to a newly initialized one."""
self.gts = {}
self.preds = {}
self._stats = OrderedDict()
self.ap = {}
self.results = OrderedDict()
def checkCw(self):
# type: (...) -> None
"""Checks chosen working confidence value."""
if (
self.eval_params.cw not in self._conf_thresholds and
self.eval_params.cw != -1.0
):
old_cw = self.eval_params.cw
# set 0 and 1 as lower and upper bound
if old_cw < 0.0:
self.eval_params.cw = 0.0
elif old_cw > 1.0:
self.eval_params.cw = 1.0
else: # determine closest possible confidence
self.eval_params.cw = min(
filter(lambda c: c >= self.eval_params.cw, self._conf_thresholds)
)
logger.warning(
"{:.2f} is used as working confidence instead of {}.".format(self.eval_params.cw, old_cw)
)
def loadGT(
self,
gt_folder # type: str
):
# type: (...) -> None
"""Loads ground truth from the given folder.
Args:
gt_folder (str): Ground truth folder
"""
logger.info("Loading GT...")
gts = getFiles(gt_folder)
logger.info("Found {} GT files.".format(len(gts)))
self._stats["GT_stats"] = OrderedDict((x, 0) for x in self.eval_params.labels_to_evaluate)
for p in gts:
gts_for_image = []
ignores_for_image = []
# extract CITY_RECORDID_IMAGE from filepath
base = os.path.basename(p)
base = base[:base.rfind("_")]
# check for valid json file
try:
with open(p) as f:
data = json.load(f)
except json.decoder.JSONDecodeError:
logger.error("Invalid GT json file: {}".format(base))
raise
# check for 'objects' and 'sensor'
if "objects" not in data.keys():
msg = "'objects' missing in GT json file: {}".format(base)
logger.error(msg)
raise KeyError(msg)
if "sensor" not in data.keys():
msg = "'sensor' missing in GT json file: {}".format(base)
logger.error(msg)
raise KeyError(msg)
# load Camera object
camera = Camera(
data["sensor"]["fx"],
data["sensor"]["fy"],
data["sensor"]["u0"],
data["sensor"]["v0"],
data["sensor"]["sensor_T_ISO_8855"]
)
# load 3D boxes
for d in data["objects"]:
if d["label"] in self.eval_params.labels_to_evaluate:
self._stats["GT_stats"][d["label"]] += 1
box_data = CsBbox3d()
box_data.fromJsonText(d)
gts_for_image.append(box_data)
# load ignore regions
for d in data["ignore"]:
box_data = CsIgnore2d()
box_data.fromJsonText(d)
ignores_for_image.append(box_data)
self.gts[base] = {
"objects": gts_for_image,
"ignores": ignores_for_image
}
self.cameras[base] = camera
def loadPredictions(
self,
pred_folder # type: str
):
# type: (...) -> None
"""Loads all predictions from the given folder.
Args:
pred_folder (str): Prediction folder
"""
logger.info("Loading predictions...")
predictions = getFiles(pred_folder)
predictions.sort()
logger.info("Found {} prediction files.".format(len(predictions)))
for p in predictions:
preds_for_image = []
# extract CITY_RECORDID_IMAGE from filepath
base = os.path.basename(p)
base = base[:base.rfind("_")]
# check for valid json file
try:
with open(p) as f:
data = json.load(f)
except json.decoder.JSONDecodeError:
logger.error("Invalid prediction json file: {}".format(base))
raise
# check for 'objects'
if "objects" not in data.keys():
logger.error("'objects' missing in prediction json file: {}".format(base))
raise
for d in data["objects"]:
if (
"label" in d.keys() and
d["label"] in self.eval_params.labels_to_evaluate
):
try:
box_data = CsBbox3d()
box_data.fromJsonText(d)
except Exception:
logger.critical("Found incorrect annotation in {}.".format(p))
continue
preds_for_image.append(box_data)
self.preds[base] = {
"objects": preds_for_image
}
def evaluate(self):
# type: (...) -> None
"""Main evaluation routine."""
# fill up predictions dict with empty detections if prediction file not found
for base in self.gts.keys():
if base not in self.preds.keys():
logger.critical(
"Could not find any prediction for image {}.".format(base))
self.preds[base] = {"objects": []}
# initialize empty data
for s in self._conf_thresholds:
self._stats[s] = {}
self._stats[s]["data"] = {}
logger.info("Evaluating images...")
# calculate stats for each image
self._calcImageStats()
logger.info("Calculate AP...")
# calculate 2D ap
self._calculateAp()
logger.info("Calculate TP stats...")
# calculate TP stats (center dist, size similarity, orientation score)
self._calcTpStats()
def saveResults(
self,
result_folder # type: str
):
# type: (...) -> str
"""Saves the evaluation results to ``"results.json"``
Args:
result_folder (str): directory in which the result files are saved
Returns:
str: filepath of ``"results.json"``
"""
result_file = os.path.join(result_folder, "results.json")
with open(result_file, 'w') as f:
json.dump(self.results, f, indent=4)
# dump internal stats for debugging
# stats_file = os.path.join(result_folder, "stats.json")
# with open(stats_file, 'w') as f:
# json.dump(self._stats, f, indent=4)
return result_file
def _calcImageStats(self):
# type: (...) -> None
"""Internal method that calculates Precision and Recall values for whole dataset."""
# single threaded
results = []
for x in tqdm(self.gts.keys()):
results.append(self._worker(x))
# update internal result dict with the corresponding results
for thread_result in results:
for score, eval_data in thread_result.items():
data = eval_data["data"]
for img_base, match_data in data.items():
self._stats[score]["data"][img_base] = match_data
def _worker(
self,
base # type: str
):
# type: (...) -> dict
"""Internal method to run evaluation for a single image."""
tmp_stats = {}
gt_boxes = self.gts[base]
pred_boxes = self.preds[base]
camera = self.cameras[base]
# recalculate the amodal bounding boxes
box3dTransform = Box3dImageTransform(camera)
for p in pred_boxes["objects"]:
box3dTransform.initialize_box_from_annotation(p)
p.bbox_2d.setAmodalBox(box3dTransform.get_amodal_box_2d())
# calculate PR stats for each conf threshold
for s in self._conf_thresholds:
tmp_stats[s] = {
"data": {}
}
(tp_idx_gt, tp_idx_pred, fp_idx_pred,
fn_idx_gt) = self._addImageEvaluation(gt_boxes, pred_boxes, s)
assert len(tp_idx_gt) == len(tp_idx_pred)
tmp_stats[s]["data"][base] = {
"tp_idx_gt": tp_idx_gt,
"tp_idx_pred": tp_idx_pred,
"fp_idx_pred": fp_idx_pred,
"fn_idx_gt": fn_idx_gt
}
return tmp_stats
def _addImageEvaluation(
self,
gt_boxes, # type: List[CsBbox3d]
pred_boxes, # type: List[CsBbox3d]
min_score # type: float
):
# type: (...) -> Tuple[dict, dict, dict, dict]
"""Internal method to evaluate a single image.
Args:
gt_boxes (List[CsBbox3d]): GT boxes
pred_boxes (List[CsBbox3d]): Predicted boxes
min_score (float): minimum required score
Returns:
tuple(dict, dict, dict, dict): tuple of TP, FP and FN data
"""
tp_idx_gt = {}
tp_idx_pred = {}
fp_idx_pred = {}
fn_idx_gt = {}
# pre-load all ignore regions as they are the same for all classes
gt_idx_ignores = [idx for idx,
box in enumerate(gt_boxes["ignores"])]
# calculate stats per class
for i in self.eval_params.labels_to_evaluate:
# get idx for pred boxes for current class
pred_idx = [idx for idx, box in enumerate(
pred_boxes["objects"]) if box.label == i and box.score >= min_score]
# get idx for gt boxes for current class
gt_idx = [idx for idx, box in enumerate(
gt_boxes["objects"]) if box.label == i]
# if there is no prediction at all, just return an empty result
if len(pred_idx) == 0:
# dump data to result dicts
tp_idx_gt[i] = []
tp_idx_pred[i] = []
fp_idx_pred[i] = pred_idx
fn_idx_gt[i] = gt_idx
continue
# create 2D box matrix for predictions and gts
boxes_2d_pred = np.zeros((0, 4))
if len(pred_idx) > 0:
# get modal or amodal boxes depending on matching strategy
if self.eval_params.matching_method == MATCHING_AMODAL:
boxes_2d_pred = np.asarray(
[pred_boxes["objects"][x].bbox_2d.bbox_amodal for x in pred_idx])
elif self.eval_params.matching_method == MATCHING_MODAL:
boxes_2d_pred = np.asarray(
[pred_boxes["objects"][x].bbox_2d.bbox_modal for x in pred_idx])
else:
raise ValueError("Matching method {} not known!".format(self.eval_params.matching_method))
boxes_2d_gt = np.zeros((0, 4))
if len(gt_idx) > 0:
# get modal or amodal boxes depending on matching strategy
if self.eval_params.matching_method == MATCHING_AMODAL:
boxes_2d_gt = np.asarray(
[gt_boxes["objects"][x].bbox_2d.bbox_amodal for x in gt_idx])
elif self.eval_params.matching_method == MATCHING_MODAL:
boxes_2d_gt = np.asarray(
[gt_boxes["objects"][x].bbox_2d.bbox_modal for x in gt_idx])
else:
raise ValueError("Matching method {} not known!".format(self.eval_params.matching_method))
boxes_2d_gt_ignores = np.zeros((0, 4))
if len(gt_idx_ignores) > 0:
boxes_2d_gt_ignores = np.asarray(
[gt_boxes["ignores"][x].bbox for x in gt_idx_ignores])
# calculate IoU matrix between GTs and Preds
iou_matrix = calcIouMatrix(boxes_2d_gt, boxes_2d_pred)
# get matches
(gt_tp_row_idx, pred_tp_col_idx, _) = self._getMatches(iou_matrix)
# convert it to box idx
gt_tp_idx = [gt_idx[x] for x in gt_tp_row_idx]
pred_tp_idx = [pred_idx[x] for x in pred_tp_col_idx]
gt_fn_idx = [x for x in gt_idx if x not in gt_tp_idx]
pred_fp_idx_check_for_ignores = [
x for x in pred_idx if x not in pred_tp_idx]
# check if remaining FP idx match with ignored GT
boxes_2d_pred_fp = np.zeros((0, 4))
if len(pred_fp_idx_check_for_ignores) > 0:
# as there are no amodal boxes for ignore regions
# matching with ignore regions should only be performed on
# modal predictions.
boxes_2d_pred_fp = np.asarray(
[pred_boxes["objects"][x].bbox_2d.bbox_modal for x in pred_fp_idx_check_for_ignores])
overlap_matrix = calcOverlapMatrix(
boxes_2d_gt_ignores, boxes_2d_pred_fp)
# get matches and convert to actual box idx
(_, pred_tp_col_idx, _) = self._getMatches(overlap_matrix, matchIgnores=True)
pred_tp_ignores_idx = [
pred_fp_idx_check_for_ignores[x] for x in pred_tp_col_idx]
pred_fp_idx = [
x for x in pred_fp_idx_check_for_ignores if x not in pred_tp_ignores_idx]
# dump data to result dicts
tp_idx_gt[i] = gt_tp_idx
tp_idx_pred[i] = pred_tp_idx
fp_idx_pred[i] = pred_fp_idx
fn_idx_gt[i] = gt_fn_idx
return (tp_idx_gt, tp_idx_pred, fp_idx_pred, fn_idx_gt)
def _getMatches(
self,
iou_matrix, # type: np.ndarray
matchIgnores=False # type: bool
):
# type: (...) -> Tuple[List[int], List[int], List[int]]
"""Internal method that gets the TP matches between the predictions and the GT data.
Args:
iou_matrix (np.ndarray): The NxM matrix containing the pairwise overlap or IoU
matchIgnores (bool): If set to True, allow multiple matches with ignore regions
Returns:
tuple(list[int],list[int],list[float]): A tuple containing the TP indices
for GT and predictions and the corresponding iou
"""
matched_gts = []
matched_preds = []
matched_ious = []
# we either have gt and no predictions or no predictions but gt
if iou_matrix.shape[0] == 0 or iou_matrix.shape[1] == 0:
return [], [], []
# iteratively select the max of the iou_matrix and set the corresponding
# rows and cols to 0.
tmp_iou_max = np.max(iou_matrix)
while tmp_iou_max > self.eval_params.min_iou_to_match:
tmp_row, tmp_col = np.where(iou_matrix == tmp_iou_max)
used_row = tmp_row[0]
used_col = tmp_col[0]
matched_gts.append(used_row)
matched_preds.append(used_col)
matched_ious.append(np.max(iou_matrix))
if matchIgnores is False:
iou_matrix[used_row, ...] = 0.0
iou_matrix[..., used_col] = 0.0
tmp_iou_max = np.max(iou_matrix)
return (matched_gts, matched_preds, matched_ious)
def _calcCenterDistances(
self,
label, # type: str
gt_boxes, # type: List[CsBbox3d]
pred_boxes, # type: List[CsBbox3d]
):
# type: (...) -> np.ndarray
"""Internal method that calculates the BEV distance for a TP box
d = sqrt(dx*dx + dz*dz)
Args:
label (str): the class that will be evaluated
gt_boxes (List[CsBbox3d]): GT boxes
pred_boxes (List[CsBbox3d]): Predicted boxes
Returns:
np.ndarray: array containing the GT distances
"""
gt_boxes = np.asarray([x.center for x in gt_boxes])
pred_boxes = np.asarray([x.center for x in pred_boxes])
gt_dists = np.sqrt(gt_boxes[..., 0]**2 +
gt_boxes[..., 1]**2).astype(int)
center_dists = gt_boxes - pred_boxes
center_dists = np.sqrt(center_dists[..., 0]**2 +
center_dists[..., 1]**2)
for gt_dist, center_dist in zip(gt_dists, center_dists):
if gt_dist >= self.eval_params.max_depth:
continue
# instead of unbound distances in m we want to transform this in a score between 0 and 1
# e.g. if the max_depth == 100
# score = 1. - (dist / 100)
gt_dist = int(gt_dist / self.eval_params.step_size) * \
self.eval_params.step_size
self._stats["working_data"][label]["Center_Dist"][gt_dist].append(
1. - min(center_dist / float(self.eval_params.max_depth), 1.)) # norm it to 1.
return gt_dists
def _calcSizeSimilarities(
self,
label, # type: str
gt_boxes, # type: List[CsBbox3d]
pred_boxes, # type: List[CsBbox3d]
gt_dists # type: np.ndarray
):
# type: (...) -> None
"""Internal method that calculates the size similarity for a TP box
s = min(w/w', w'/w) * min(h/h', h'/h) * min(l/l', l'/l)
Args:
label (str): the class that will be evaluated
gt_boxes (List[CsBbox3d]): GT boxes
pred_boxes (List[CsBbox3d]): Predicted boxes
gt_dists (np.ndarray): GT distances
"""
gt_boxes = np.asarray([x.dims for x in gt_boxes])
pred_boxes = np.asarray([x.dims for x in pred_boxes])
size_similarities = np.prod(np.minimum(
gt_boxes / pred_boxes, pred_boxes / gt_boxes), axis=1)
for gt_dist, size_simi in zip(gt_dists, size_similarities):
if gt_dist >= self.eval_params.max_depth:
continue
gt_dist = int(gt_dist / self.eval_params.step_size) * \
self.eval_params.step_size
self._stats["working_data"][label]["Size_Similarity"][gt_dist].append(
size_simi)
def _calcOrientationSimilarities(
self,
label, # type: str
gt_boxes, # type: List[CsBbox3d]
pred_boxes, # type: List[CsBbox3d]
gt_dists # type: np.ndarray
):
# type: (...) -> None
"""Internal method that calculates the orientation similarity for a TP box.
os_yaw = (1 + cos(delta)) / 2.
os_pitch/roll = 0.5 + (cos(delta_pitch) + cos(delta_roll)) / 4.
Args:
label (str): the class that will be evaluated
gt_boxes (List[CsBbox3d]): GT boxes
pred_boxes (List[CsBbox3d]): Predicted boxes
gt_dists (np.ndarray): GT distances
"""
gt_vals = np.asarray(
[Quaternion(x.rotation).yaw_pitch_roll for x in gt_boxes])
pred_vals = np.asarray(
[Quaternion(x.rotation).yaw_pitch_roll for x in pred_boxes])
os_yaws = (1. + np.cos(gt_vals[..., 0] - pred_vals[..., 0])) / 2.
os_pitch_rolls = 0.5 + \
(np.cos(gt_vals[..., 1] - pred_vals[..., 1]) +
np.cos(gt_vals[..., 2] - pred_vals[..., 2])) / 4.
for gt_dist, os_yaw, os_pitch_roll in zip(gt_dists, os_yaws, os_pitch_rolls):
if gt_dist >= self.eval_params.max_depth:
continue
gt_dist = int(gt_dist / self.eval_params.step_size) * \
self.eval_params.step_size
self._stats["working_data"][label]["OS_Yaw"][gt_dist].append(
os_yaw)
self._stats["working_data"][label]["OS_Pitch_Roll"][gt_dist].append(
os_pitch_roll)
def _calculateAUC(
self,
label # type: str
):
# type: (...) -> None
"""Internal method that calculates the Area Under Curve (AUC)
for the available DDTP metrics.
Args:
label (str): the class that will be evaluated
"""
parameter_depth_data = self._stats["working_data"][label]
for parameter_name, value_dict in parameter_depth_data.items():
curr_mean = -1.
result_dict = OrderedDict()
result_items = OrderedDict()
result_auc = 0.
num_items = 0
depths = []
vals = []
num_items_list = []
all_items = []
for depth, values in value_dict.items():
if len(values) > 0:
num_items += len(values)
all_items += values
curr_mean = sum(values) / float(len(values))
depths.append(depth)
vals.append(curr_mean)
num_items_list.append(len(values))
# AUC is calculated as the mean of all values for available depths
if len(vals) > 1:
result_auc = np.mean(vals)
else:
result_auc = 0.
# remove the expanded entries
for d, v, n in list(zip(depths, vals, num_items_list)):
result_dict[d] = v
result_items[d] = n
self.results[parameter_name][label]["data"] = result_dict
self.results[parameter_name][label]["auc"] = result_auc
self.results[parameter_name][label]["items"] = result_items
def _calcTpStats(self):
# type (...) -> None
"""Internal method that calculates working point for each class and calculate TP stats.
Calculated stats are:
- BEV mean center distance
- size similarity
- orientation score for yaw and pitch/roll
"""
parameters = ["AP", "Center_Dist",
"Size_Similarity", "OS_Yaw", "OS_Pitch_Roll"]
# setup result dict
for parameter in parameters:
if parameter == "AP":
continue
self.results[parameter] = OrderedDict()
for x in self.eval_params.labels_to_evaluate:
self.results[parameter][x] = OrderedDict()
self.results[parameter][x]["data"] = OrderedDict()
self.results[parameter][x]["items"] = OrderedDict()
self.results[parameter][x]["auc"] = 0.
# calculate the statistics for each class
for label in self.eval_params.labels_to_evaluate:
working_confidence = self._stats["working_confidence"][label]
working_data = self._stats[working_confidence]["data"]
self._stats["working_data"] = {}
self._stats["working_data"][label] = OrderedDict()
self._stats["working_data"][label]["Center_Dist"] = OrderedDict((x, []) for x in self._depth_bins)
self._stats["working_data"][label]["Size_Similarity"] = OrderedDict((x, []) for x in self._depth_bins)
self._stats["working_data"][label]["OS_Yaw"] = OrderedDict((x, []) for x in self._depth_bins)
self._stats["working_data"][label]["OS_Pitch_Roll"] = OrderedDict((x, []) for x in self._depth_bins)
# loop over all images
for base_img, tp_fp_fn_data in working_data.items():
gt_boxes = self.gts[base_img]["objects"]
pred_boxes = self.preds[base_img]["objects"]
tp_idx_gt = tp_fp_fn_data["tp_idx_gt"]
tp_idx_pred = tp_fp_fn_data["tp_idx_pred"]
# only select the GT boxes
gt_boxes = [gt_boxes[x] for x in tp_idx_gt[label]]
pred_boxes = [pred_boxes[x] for x in tp_idx_pred[label]]
# there is no prediction or GT -> no TP statistics
if len(gt_boxes) == 0 or len(pred_boxes) == 0:
continue
# calculate center_dists for image
gt_dists = self._calcCenterDistances(
label, gt_boxes, pred_boxes)
# calculate size similarities
self._calcSizeSimilarities(
label, gt_boxes, pred_boxes, gt_dists)
# calculate orientation similarities
self._calcOrientationSimilarities(
label, gt_boxes, pred_boxes, gt_dists)
# calc AUC and detection score
self._calculateAUC(label)
# determine which categories have GT data and can be used for mean calculation
accept_cats = []
for cat, count in self._stats["GT_stats"].items():
if count == 0:
logger.warn("Category {} has no GT!".format(cat))
else:
accept_cats.append(cat)
# add GT statistics and working confidence to results
self.results["GT_stats"] = self._stats["GT_stats"]
self.results["working_confidence"] = self._stats["working_confidence"]
# add evaluation parameters to results
modal_amodal_modifier = "Amodal"
if self.eval_params.matching_method == MATCHING_MODAL:
modal_amodal_modifier = "Modal"
self.results["eval_params"] = OrderedDict()
self.results["eval_params"]["labels"] = self.eval_params.labels_to_evaluate
self.results["eval_params"]["min_iou_to_match"] = self.eval_params.min_iou_to_match
self.results["eval_params"]["max_depth"] = self.eval_params.max_depth
self.results["eval_params"]["step_size"] = self.eval_params.step_size
self.results["eval_params"]["matching_method"] = modal_amodal_modifier
# calculate detection scores and add them to results
self.results["Detection_Score"] = OrderedDict()
logger.info("========================")
logger.info("======= Results ========")
logger.info("========================")
# calculate detection store for each class
for label in self.eval_params.labels_to_evaluate:
vals = {p: self.results[p][label]["auc"] for p in parameters}
det_score = vals["AP"] * (vals["Center_Dist"] + vals["Size_Similarity"] +
vals["OS_Yaw"] + vals["OS_Pitch_Roll"]) / 4.
self.results["Detection_Score"][label] = det_score
logger.info(label)
logger.info(" -> 2D AP {:<6} : {:8.4f}".format(modal_amodal_modifier, vals["AP"] * 100))
logger.info(" -> BEV Center Distance (DDTP) : {:8.4f}".format(vals["Center_Dist"] * 100))
logger.info(" -> Yaw Similarity (DDTP) : {:8.4f}".format(vals["OS_Yaw"] * 100))
logger.info(" -> Pitch/Roll Similarity (DDTP): {:8.4f}".format(vals["OS_Pitch_Roll"] * 100))
logger.info(" -> Size Similarity (DDTP) : {:8.4f}".format(vals["Size_Similarity"] * 100))
logger.info(" -> Detection Score : {:8.4f}".format(det_score * 100))
self.results["mDetection_Score"] = np.mean(
[x for cat, x in self.results["Detection_Score"].items() if cat in accept_cats])
logger.info("Mean Detection Score: {:8.4f}".format(self.results["mDetection_Score"] * 100))
# add mean evaluation results
for parameter_name in parameters:
self.results["m" + parameter_name] = np.mean(
[x["auc"] for cat, x in self.results[parameter_name].items() if cat in accept_cats])
def _calculateAp(self):
# type: (...) -> None
"""Internal method that calculates Average Precision (AP) values for the whole dataset."""
for s in self._conf_thresholds:
score_data = self._stats[s]["data"]
# dicts containing TP, FP and FN per depth per class
tp_per_depth = {x: {d: [] for d in self._depth_bins} for x in self.eval_params.labels_to_evaluate}
fp_per_depth = {x: {d: [] for d in self._depth_bins} for x in self.eval_params.labels_to_evaluate}
fn_per_depth = {x: {d: [] for d in self._depth_bins} for x in self.eval_params.labels_to_evaluate}
# dicts containing precision and recall and AP per depth per class
precision_per_depth = {x: {} for x in self.eval_params.labels_to_evaluate}
recall_per_depth = {x: {} for x in self.eval_params.labels_to_evaluate}
auc_per_depth = {x: {} for x in self.eval_params.labels_to_evaluate}
# dicts containing overall TP, FP and FN per class
tp = {x: 0 for x in self.eval_params.labels_to_evaluate}
fp = {x: 0 for x in self.eval_params.labels_to_evaluate}
fn = {x: 0 for x in self.eval_params.labels_to_evaluate}
# dicts containing overall precision, recall and AP per class
precision = {x: 0 for x in self.eval_params.labels_to_evaluate}
recall = {x: 0 for x in self.eval_params.labels_to_evaluate}
auc = {x: 0 for x in self.eval_params.labels_to_evaluate}
# get the statistics for each image
for img_base, img_base_stats in score_data.items():
gt_depths = [x.depth for x in self.gts[img_base]["objects"]]
pred_depths = [x.depth for x in self.preds[img_base]["objects"]]
for label, idxs in img_base_stats["tp_idx_gt"].items():
tp[label] += len(idxs)
for idx in idxs:
tp_depth = gt_depths[idx]
if tp_depth >= self.eval_params.max_depth:
continue
tp_depth = int(tp_depth / self.eval_params.step_size) * self.eval_params.step_size
tp_per_depth[label][tp_depth].append(idx)
for label, idxs in img_base_stats["fp_idx_pred"].items():
fp[label] += len(idxs)
for idx in idxs:
fp_depth = pred_depths[idx]
if fp_depth >= self.eval_params.max_depth:
continue
fp_depth = int(fp_depth / self.eval_params.step_size) * self.eval_params.step_size
fp_per_depth[label][fp_depth].append(idx)
for label, idxs in img_base_stats["fn_idx_gt"].items():
fn[label] += len(idxs)
for idx in idxs:
fn_depth = gt_depths[idx]
if fn_depth >= self.eval_params.max_depth:
continue
fn_depth = int(fn_depth / self.eval_params.step_size) * self.eval_params.step_size
fn_per_depth[label][fn_depth].append(idx)
# calculate per depth precision and recall per class
for label in self.eval_params.labels_to_evaluate:
for i in self._depth_bins:
tp_at_depth = len(tp_per_depth[label][i])
fp_at_depth = len(fp_per_depth[label][i])
accum_fn = len(fn_per_depth[label][i])
if tp_at_depth == 0 and accum_fn == 0:
precision_per_depth[label][i] = -1
recall_per_depth[label][i] = -1
elif tp_at_depth == 0:
precision_per_depth[label][i] = 0
recall_per_depth[label][i] = 0
else:
precision_per_depth[label][i] = tp_at_depth / \
float(tp_at_depth + fp_at_depth)
recall_per_depth[label][i] = tp_at_depth / \
float(tp_at_depth + accum_fn)
auc_per_depth[label][i] = precision_per_depth[label][i] * \
recall_per_depth[label][i]
if tp[label] == 0:
precision[label] = 0
recall[label] = 0
else:
precision[label] = tp[label] / \
float(tp[label] + fp[label])
recall[label] = tp[label] / \
float(tp[label] + fn[label])
auc[label] = precision[label] * recall[label]
# write to stats
self._stats[s]["pr_data"] = {
"tp": tp,
"fp": tp,
"fn": fn,
"precision": precision,
"recall": recall,
"auc": auc,
"tp_per_depth": tp_per_depth,
"fp_per_depth": fp_per_depth,
"fn_per_depth": fn_per_depth,
"precision_per_depth": precision_per_depth,
"recall_per_depth": recall_per_depth,
"auc_per_depth": auc_per_depth,
}
# dict containing data for AP and mAP
ap = OrderedDict()
for x in self.eval_params.labels_to_evaluate:
ap[x] = OrderedDict()
ap[x]["data"] = OrderedDict()
ap[x]["auc"] = 0.
ap_per_depth = OrderedDict(
(x, OrderedDict()) for x in self.eval_params.labels_to_evaluate
)
# dict containing the working point for DDTP metrics
working_confidence = OrderedDict((x, 0) for x in self.eval_params.labels_to_evaluate)
# calculate standard AP per class
for label in self.eval_params.labels_to_evaluate:
# best_auc and best_score are used for determining working point
best_auc = 0.
best_score = 0.
recalls_ = []
precisions_ = []
for s in self._conf_thresholds:
current_auc_for_score = self._stats[s]["pr_data"]["auc"][label]
if current_auc_for_score > best_auc:
best_auc = current_auc_for_score
best_score = s
recalls_.append(self._stats[s]["pr_data"]["recall"][label])
precisions_.append(self._stats[s]["pr_data"]["precision"][label])
# sort for an ascending recalls list
sorted_pairs = sorted(zip(recalls_, precisions_), key=lambda pair: pair[0])