-
Notifications
You must be signed in to change notification settings - Fork 20
/
CLA.py
309 lines (309 loc) · 11.6 KB
/
CLA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python
#
# I (Martin Dengler) have been given the OK to upload this code to
# github, as long as I indicate:
#
# 1. That David H. Bailey and Marcos Lopez de Prado are the original
# authors.
#
# 2. That this code is provided under a GPL license for
# non-commercial purposes.
#
# 3. That the original authors retain the rights as it relates to
# commercial applications.
#
# The accompanying paper was published in an open-access application:
# http://ssrn.com/abstract=2197616
#
# The original code is here:
#
# http://www.quantresearch.info/CLA.py.txt
# http://www.quantresearch.info/CLA_Main.py.txt
#
# A sample dataset can be found here:
# http://www.quantresearch.info/CLA_Data.csv.txt
#
#
# On 20130210, v0.2
# Critical Line Algorithm
# by MLdP <lopezdeprado@lbl.gov>
#
# From: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2197616
#
# "All code in this paper is provided 'as is', and contributed to the
# academic community for non-business purposes only, under a GNU-GPL
# license"
#
import numpy as np
#---------------------------------------------------------------
#---------------------------------------------------------------
class CLA:
def __init__(self,mean,covar,lB,uB):
# Initialize the class
self.mean=mean
self.covar=covar
self.lB=lB
self.uB=uB
self.w=[] # solution
self.l=[] # lambdas
self.g=[] # gammas
self.f=[] # free weights
#---------------------------------------------------------------
def solve(self):
# Compute the turning points,free sets and weights
f,w=self.initAlgo()
self.w.append(np.copy(w)) # store solution
self.l.append(None)
self.g.append(None)
self.f.append(f[:])
while True:
#1) case a): Bound one free weight
l_in=None
if len(f)>1:
covarF,covarFB,meanF,wB=self.getMatrices(f)
covarF_inv=np.linalg.inv(covarF)
j=0
for i in f:
l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,j,[self.lB[i],self.uB[i]])
if l>l_in:l_in,i_in,bi_in=l,i,bi
j+=1
#2) case b): Free one bounded weight
l_out=None
if len(f)<self.mean.shape[0]:
b=self.getB(f)
for i in b:
covarF,covarFB,meanF,wB=self.getMatrices(f+[i])
covarF_inv=np.linalg.inv(covarF)
l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,meanF.shape[0]-1, \
self.w[-1][i])
if (self.l[-1]==None or l<self.l[-1]) and l>l_out:l_out,i_out=l,i
if (l_in==None or l_in<0) and (l_out==None or l_out<0):
#3) compute minimum variance solution
self.l.append(0)
covarF,covarFB,meanF,wB=self.getMatrices(f)
covarF_inv=np.linalg.inv(covarF)
meanF=np.zeros(meanF.shape)
else:
#4) decide lambda
if l_in>l_out:
self.l.append(l_in)
f.remove(i_in)
covarF,covarFB,meanF,wB=self.getMatrices(f)
w[i_in]=bi_in # set value at the correct boundary
wB[i_in]=bi_in
else:
self.l.append(l_out)
f.append(i_out)
covarF,covarFB,meanF,wB=self.getMatrices(f)
covarF_inv=np.linalg.inv(covarF)
#5) compute solution vector
wF,g=self.computeW(covarF_inv,covarFB,meanF,wB)
for i in range(len(f)):w[f[i]]=wF[i]
self.w.append(np.copy(w)) # store solution
self.g.append(g)
self.f.append(f[:])
if self.l[-1]==0:break
#6) Purge turning points
self.purgeNumErr(10e-10)
self.purgeExcess()
#---------------------------------------------------------------
def initAlgo(self):
# Initialize the algo
#1) Form structured array
a=np.zeros((self.mean.shape[0]),dtype=[('id',int),('mu',float)])
b=[self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list
a[:]=zip(range(self.mean.shape[0]),b) # fill structured array
#2) Sort structured array
b=np.sort(a,order='mu')
#3) First free weight
i,w=b.shape[0],np.copy(self.lB)
while sum(w)<1:
i-=1
w[b[i][0]]=self.uB[b[i][0]]
w[b[i][0]]+=1-sum(w)
return [b[i][0]],w
#---------------------------------------------------------------
def computeBi(self,c,bi):
if c>0:
bi=bi[1][0]
if c<0:
bi=bi[0][0]
return bi
#---------------------------------------------------------------
def computeW(self,covarF_inv,covarFB,meanF,wB):
#1) compute gamma
onesF=np.ones(meanF.shape)
g1=np.dot(np.dot(onesF.T,covarF_inv),meanF)
g2=np.dot(np.dot(onesF.T,covarF_inv),onesF)
if wB is None:
g,w1=float(-self.l[-1]*g1/g2+1/g2),0
else:
onesB=np.ones(wB.shape)
g3=np.dot(onesB.T,wB)
g4=np.dot(covarF_inv,covarFB)
w1=np.dot(g4,wB)
g4=np.dot(onesF.T,w1)
g=float(-self.l[-1]*g1/g2+(1-g3+g4)/g2)
#2) compute weights
w2=np.dot(covarF_inv,onesF)
w3=np.dot(covarF_inv,meanF)
return -w1+g*w2+self.l[-1]*w3,g
#---------------------------------------------------------------
def computeLambda(self,covarF_inv,covarFB,meanF,wB,i,bi):
#1) C
onesF=np.ones(meanF.shape)
c1=np.dot(np.dot(onesF.T,covarF_inv),onesF)
c2=np.dot(covarF_inv,meanF)
c3=np.dot(np.dot(onesF.T,covarF_inv),meanF)
c4=np.dot(covarF_inv,onesF)
c=-c1*c2[i]+c3*c4[i]
if c==0:return
#2) bi
if type(bi)==list:bi=self.computeBi(c,bi)
#3) Lambda
if wB is None:
# All free assets
return float((c4[i]-c1*bi)/c),bi
else:
onesB=np.ones(wB.shape)
l1=np.dot(onesB.T,wB)
l2=np.dot(covarF_inv,covarFB)
l3=np.dot(l2,wB)
l2=np.dot(onesF.T,l3)
return float(((1-l1+l2)*c4[i]-c1*(bi+l3[i]))/c),bi
#---------------------------------------------------------------
def getMatrices(self,f):
# Slice covarF,covarFB,covarB,meanF,meanB,wF,wB
covarF=self.reduceMatrix(self.covar,f,f)
meanF=self.reduceMatrix(self.mean,f,[0])
b=self.getB(f)
covarFB=self.reduceMatrix(self.covar,f,b)
wB=self.reduceMatrix(self.w[-1],b,[0])
return covarF,covarFB,meanF,wB
#---------------------------------------------------------------
def getB(self,f):
return self.diffLists(range(self.mean.shape[0]),f)
#---------------------------------------------------------------
def diffLists(self,list1,list2):
return list(set(list1)-set(list2))
#---------------------------------------------------------------
def reduceMatrix(self,matrix,listX,listY):
# Reduce a matrix to the provided list of rows and columns
if len(listX)==0 or len(listY)==0:return
matrix_=matrix[:,listY[0]:listY[0]+1]
for i in listY[1:]:
a=matrix[:,i:i+1]
matrix_=np.append(matrix_,a,1)
matrix__=matrix_[listX[0]:listX[0]+1,:]
for i in listX[1:]:
a=matrix_[i:i+1,:]
matrix__=np.append(matrix__,a,0)
return matrix__
#---------------------------------------------------------------
def purgeNumErr(self,tol):
# Purge violations of inequality constraints (associated with ill-conditioned covar matrix)
i=0
while True:
if i==len(self.w):break
w=self.w[i]
for j in range(w.shape[0]):
if w[j]-self.lB[j]<-tol or w[j]-self.uB[j]>tol:
del self.w[i]
del self.l[i]
del self.g[i]
del self.f[i]
break
i+=1
#---------------------------------------------------------------
def purgeExcess(self):
# Remove violations of the convex hull
i,repeat=0,False
while True:
if repeat==False:i+=1
if i==len(self.w)-1:break
w=self.w[i]
mu=np.dot(w.T,self.mean)[0,0]
j,repeat=i+1,False
while True:
if j==len(self.w):break
w=self.w[j]
mu_=np.dot(w.T,self.mean)[0,0]
if mu<mu_:
del self.w[i]
del self.l[i]
del self.g[i]
del self.f[i]
repeat=True
break
else:
j+=1
#---------------------------------------------------------------
def getMinVar(self):
# Get the minimum variance solution
var=[]
for w in self.w:
a=np.dot(np.dot(w.T,self.covar),w)
var.append(a)
return min(var)**.5,self.w[var.index(min(var))]
#---------------------------------------------------------------
def getMaxSR(self):
# Get the max Sharpe ratio portfolio
#1) Compute the local max SR portfolio between any two neighbor turning points
w_sr,sr=[],[]
for i in range(len(self.w)-1):
w0=np.copy(self.w[i])
w1=np.copy(self.w[i+1])
kargs={'minimum':False,'args':(w0,w1)}
a,b=self.goldenSection(self.evalSR,0,1,**kargs)
w_sr.append(a*w0+(1-a)*w1)
sr.append(b)
return max(sr),w_sr[sr.index(max(sr))]
#---------------------------------------------------------------
def evalSR(self,a,w0,w1):
# Evaluate SR of the portfolio within the convex combination
w=a*w0+(1-a)*w1
b=np.dot(w.T,self.mean)[0,0]
c=np.dot(np.dot(w.T,self.covar),w)[0,0]**.5
return b/c
#---------------------------------------------------------------
def goldenSection(self,obj,a,b,**kargs):
# Golden section method. Maximum if kargs['minimum']==False is passed
from math import log,ceil
tol,sign,args=1.0e-9,1,None
if 'minimum' in kargs and kargs['minimum']==False:sign=-1
if 'args' in kargs:args=kargs['args']
numIter=int(ceil(-2.078087*log(tol/abs(b-a))))
r=0.618033989
c=1.0-r
# Initialize
x1=r*a+c*b;x2=c*a+r*b
f1=sign*obj(x1,*args);f2=sign*obj(x2,*args)
# Loop
for i in range(numIter):
if f1>f2:
a=x1
x1=x2;f1=f2
x2=c*a+r*b;f2=sign*obj(x2,*args)
else:
b=x2
x2=x1;f2=f1
x1=r*a+c*b;f1=sign*obj(x1,*args)
if f1<f2:return x1,sign*f1
else:return x2,sign*f2
#---------------------------------------------------------------
def efFrontier(self,points):
# Get the efficient frontier
mu,sigma,weights=[],[],[]
a=np.linspace(0,1,points/len(self.w))[:-1] # remove the 1, to avoid duplications
b=range(len(self.w)-1)
for i in b:
w0,w1=self.w[i],self.w[i+1]
if i==b[-1]:a=np.linspace(0,1,points/len(self.w)) # include the 1 in the last iteration
for j in a:
w=w1*j+(1-j)*w0
weights.append(np.copy(w))
mu.append(np.dot(w.T,self.mean)[0,0])
sigma.append(np.dot(np.dot(w.T,self.covar),w)[0,0]**.5)
return mu,sigma,weights
#---------------------------------------------------------------
#---------------------------------------------------------------