-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.m
44 lines (29 loc) · 882 Bytes
/
train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
clear
% Transforming training data for Anomaly Detection
% X = round(100*abs(randn(100,1)));
% Load cross-validation data (synthetic)
% Xval
% load('gendata.txt');
Xval = round(1000*abs(randn(90,1)));
Xval(find(Xval<10))=0;
% Load errors data
% B
load('errorsdata.txt');
% Load training data (synthetic)
% X
% load('train.txt');
X = round(100*abs(randn(100,1)));
X(find(X<10))=0;
% Flag data (ground truth)
yval = [zeros(size(Xval)); ones(size(B))];
Xval = [Xval; B];
% Transform data to be more gaussian-like
Xgauss = X.^0.05; %sqrt(X);
Xvalgauss = Xval.^0.05; %sqrt(Xval);
% Estimate my and sigma2
[mu sigma2] = estimateGaussian(Xgauss);
% Returns the density of the multivariate normal at each data point (row)
% of X
p = multivariateGaussian(Xgauss, mu, sigma2);
pval = multivariateGaussian(Xvalgauss, mu, sigma2);
[epsilon F1] = selectThreshold(yval, pval);