-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
613 lines (544 loc) · 28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
import sys
from munch import Munch
from random import randint
import uuid
import random
import itertools
from quinine import QuinineArgumentParser
from tqdm import tqdm
import numpy as np
import torch
import yaml
from eval import get_run_metrics
from tasks import get_task_sampler, PolynomialsUnbiasedPoints, HaarWavelets
from samplers import get_data_sampler, sample_scale
from curriculum import Curriculum
from schema import schema
from models import build_model
from eval import eval_model, load_into_model_from_run
import pickle
from KS_monomial_sets import monomial_terms
from torch.distributions.multivariate_normal import MultivariateNormal
from transformers import get_scheduler
import copy
import wandb
import pdb
import time
from training_utils import compute_and_log_model_norm, filter_hold_out_freq, listify, equal_ignore_order
torch.backends.cudnn.benchmark = True
def train_step(model, xs, ys, optimizer, loss_func, batch_idx, max_train_steps, k_steps_for_loss="all", num_accum_steps=1, lr_scheduler=None):
# optimizer.zero_grad()
output = model(xs, ys)
if k_steps_for_loss == "all":
loss = loss_func(output, ys)
else:
loss = loss_func(
output[:, -int(k_steps_for_loss) :], ys[:, -int(k_steps_for_loss) :]
)
# normalize loss to account for batch accumulation
loss = loss / num_accum_steps
loss.backward()
# optimizer.step()
if ((batch_idx + 1) % num_accum_steps == 0) or (batch_idx + 1 == max_train_steps):
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
optimizer.zero_grad()
return loss.detach().item(), output.detach()
def sample_seeds(total_seeds, count):
seeds = set()
while len(seeds) < count:
seeds.add(randint(0, total_seeds - 1))
return seeds
def wandb_log_task(task, metrics_task, baseline_loss, point_wise_tags, step, suffix="", loss_scaling_factor=1.0):
wandb.log(
{
f"{task}_eval{suffix}/overall_loss": np.mean(metrics_task["mean"]) * loss_scaling_factor,
f"{task}_eval{suffix}/excess_loss": np.mean(metrics_task["mean"]) * loss_scaling_factor / baseline_loss,
f"{task}_eval{suffix}/pointwise/loss": dict(
zip(point_wise_tags, np.array(metrics_task["mean"]) * loss_scaling_factor)
),
},
step=step,
)
def get_n_points_eval(task, n_dims, task_kwargs, curriculum):
return curriculum.n_points_schedule.end
# n_points_eval = 0
# if 'polynomials_deg2_monomials_selection' in task:
# n_points_eval = curriculum.n_points_schedule.end
# elif 'polynomials' == task or 'polynomials_unbiased_points' == task:
# # n_points_eval = 2 * task_kwargs.max_degree + 1
# n_points_eval = curriculum.n_points_schedule.end
# elif "_cs" not in task:
# # n_points_eval = 2 * n_dims + 1
# # TODO: if we choose to log the inf-norm-optimization performance while training then this will break when n_points_eval > current value of input dimensions + 1
# # This is because inf-norm-optimization LPP is feasible only when n_points_eval <= current value of input dimension + 1
# # Remedy for this is to use a different n_points_eval value for each solver such that it is always feasible
# n_points_eval = curriculum.n_points_schedule.end
# else:
# n_points_eval = curriculum.n_points_schedule.end
# return n_points_eval
def get_training_optimizer(model, args):
optimizer = None
lr_scheduler = None
if args.model.train_only_emb:
# set requires_grad=False for all params
for param in model.parameters():
param.requires_grad = False
# set requires_grad=True for model._read_in i.e. embedding layer
for param in model._read_in.parameters():
param.requires_grad = True
# pass only the params with requires_grad=True to the optimizer
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.training.learning_rate)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.training.learning_rate)
if args.training.schedule is not None:
assert args.training.schedule == "triangle", "Only triangle learning rate schedule is implemented."
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=args.training.warmup_steps,
num_training_steps=args.training.train_steps,
)
return optimizer, lr_scheduler
def get_all_deg2_term_indices(n_dims):
all_deg2_terms = []
for i in range(n_dims):
all_deg2_terms.append([i, i])
for j in range(i+1,n_dims):
all_deg2_terms.append([i, j])
return all_deg2_terms
def validateTaskKwargs(args):
taskName = args.training.task
task_kwargs = args.training.task_kwargs
if taskName == "polynomials_deg2_monomials_selection_unbiased":
variant = task_kwargs["variant"]
assert variant in ["fixedS", "fixedK", "randomS"], "invalid variant provided"
if variant == "fixedS":
assert len(task_kwargs["fixedS"]) == task_kwargs["numDeg2Select"], "Length of fixed S is different from number of monomial degree 2 terms to be selected"
fixedS_array = np.array(task_kwargs["fixedS"])
assert np.all((0 <= fixedS_array) & (fixedS_array <= args.model.n_dims-1)), "Some index in fixedS is out of bounds [0, n_dims-1]"
elif variant == "fixedK":
fixedK_array = np.array(task_kwargs["fixedK"])
assert fixedK_array.shape == (task_kwargs["sizeOfK"], task_kwargs["numDeg2Select"], 2), "Shape of fixed K is different from (|K|, |S|, 2) as per config"
assert np.all((0 <= fixedK_array) & (fixedK_array <= args.model.n_dims-1)), "For some S in fixedK, some index is out of bounds [0, n_dims-1]"
elif variant == "randomS":
assert task_kwargs["numDeg2Select"] < len(task_kwargs["all_deg2_terms"]), "|S| must be less than the number of degree 2 terms"
def train(model, args):
optimizer, lr_scheduler = get_training_optimizer(model, args)
curriculum = Curriculum(args.training.curriculum)
starting_step = 0
state_path = os.path.join(args.out_dir, "state.pt")
if os.path.exists(state_path):
state = torch.load(state_path)
model.load_state_dict(state["model_state_dict"])
optimizer.load_state_dict(state["optimizer_state_dict"])
starting_step = state["train_step"] + 1
for i in range(state["train_step"] + 1):
curriculum.update()
n_dims = model.n_dims
bsize = args.training.batch_size
if args.training.data_transformation_args is not None:
scale = sample_scale(
method=args.training.data_transformation_args.get("method", None),
n_dims=n_dims,
normalize=args.training.data_transformation_args.get("normalize", False),
seed=args.training.data_transformation_args.get("seed", None),
)
else:
scale = None
if args.training.granular_ckpt_till is not None:
assert args.training.granular_ckpt_every is not None, "granular_ckpt_every cannot be None when granular_ckpt_till is not None."
if args.training.schedule is not None:
assert args.training.warmup_steps is not None, "warmup_steps cannot be None when learning rate schedule is not None."
data_kwargs = args.training.data_kwargs
if args.training.data == "gaussian":
if data_kwargs is None:
data_kwargs = {}
data_kwargs.update({"scale": scale})
data_sampler = get_data_sampler(args.training.data, n_dims=n_dims, **data_kwargs)
excess_tensors = {}
excess_tensors_eval = {}
loss_scaling_factor = 1.0
if args.training.task == "polynomials_unbiased_points":
excess_tensors["tens"] = torch.empty(0, curriculum.n_points)
excess_tensors_eval["tens"] = torch.empty(0, 2*args.training.task_kwargs.max_degree+1)
excess_tensors["coefs"] = torch.empty(0, args.training.task_kwargs.max_degree+1)
excess_tensors_eval["coefs"] = torch.empty(0, args.training.task_kwargs.max_degree+1)
elif args.training.task == "polynomials_deg2_monomials_selection_unbiased":
# make a list of all the deg 2 monomial term indices
# for n_dims = 20, there are 20 + 190 terms: [[0, 0], [1, 1],...,[19, 19], [0, 1], [0, 2], ....[18, 19]]
all_deg2_terms = get_all_deg2_term_indices(n_dims)
args.training.task_kwargs["all_deg2_terms"] = all_deg2_terms
variant = args.training.task_kwargs["variant"]
if variant == "fixedK":
numDeg2Select = args.training.task_kwargs["numDeg2Select"]
sizeOfK = args.training.task_kwargs["sizeOfK"]
args.training.task_kwargs["fixedK"] = torch.tensor(monomial_terms[f"{n_dims}-{sizeOfK}-{numDeg2Select}"], dtype=torch.int64)
elif args.training.task == "gaussian_mixture_linear_regression":
mean = torch.zeros(size=(n_dims,))
mean[0] = args.training.task_kwargs["gaussian_centre_abs"]
cov = torch.eye(n_dims)
cov[0,0] = 1e-8
distrib1 = MultivariateNormal(loc=mean, covariance_matrix=cov)
distrib2 = MultivariateNormal(loc=-mean, covariance_matrix=cov)
args.training.task_kwargs["distrib1"] = distrib1
args.training.task_kwargs["distrib2"] = distrib2
elif args.training.task == "haar_wavelets":
# create a dummy object to access haar methods
hw = HaarWavelets(n_dims=1, batch_size=4)
max_level = args.training.task_kwargs["max_level"]
# create the vectorized basis based on max_level of haar wavelets
vectorized_basis = [np.vectorize(f) for f in hw.haar_basis(max_level=max_level)]
args.training.task_kwargs["vectorized_basis"] = vectorized_basis
elif args.training.task == "noisy_lr_task_diversity":
loss_scaling_factor = (1/n_dims)
elif args.training.task == "fourier_series_multitask":
# make a list of all the subsets of fourier basis with freq in [1, max_frequency]
# for max_frequency = 20 and sizeOfS=3, there are 20C3 subsets: [[1, 2, 3], [1, 2, 4], ...]
sizeOfS = args.training.task_kwargs["sizeOfS"]
max_frequency = args.training.task_kwargs["max_frequency"]
training_S_list = list(map(set, itertools.combinations(list(range(1, max_frequency+1)), sizeOfS)))
all_S_list = training_S_list
variant = args.training.task_kwargs["variant"]
if "hold_out_freq" in args.training.task_kwargs:
# filter training_S_list to not contain any hold out freq
hold_out_freq = args.training.task_kwargs["hold_out_freq"]
training_S_list = filter_hold_out_freq(hold_out_freq, training_S_list)
if variant == "fixedK":
sizeOfK = args.training.task_kwargs["sizeOfK"]
K_for_training = random.sample(training_S_list, sizeOfK)
training_S_list = K_for_training
OOD_S_list = [S for S in all_S_list if S not in training_S_list]
assert equal_ignore_order(OOD_S_list + training_S_list, all_S_list), "OOD_S_list must be the difference of all_S_list and training_S_list"
args.training.task_kwargs["training_S_list"] = listify(training_S_list)
with open(os.path.join(args.out_dir, "config.yaml"), "w") as yaml_file:
yaml.dump(args.__dict__, yaml_file, default_flow_style=False)
args.training.task_kwargs["training_S_list"] = torch.tensor(args.training.task_kwargs["training_S_list"], dtype=torch.int64)
args.training.task_kwargs["OOD_S_list"] = torch.tensor(listify(OOD_S_list), dtype=torch.int64)
args.training.task_kwargs["all_S_list"] = torch.tensor(listify(all_S_list), dtype=torch.int64)
if ("hold_out_freq" in args.training.task_kwargs) or variant == "fixedK":
# log the S's used for training. When variant == "randomS" and we do not hold out any freq, then there is no point logging as every possible subset S is equally likely during training.
wandb.config["fourier_multitask_training_subsets_S"] = listify(training_S_list)
validateTaskKwargs(args)
task_sampler = get_task_sampler(
args.training.task,
n_dims,
bsize,
num_tasks=args.training.num_tasks,
out_dir=args.out_dir,
is_save_task_pool=args.is_save_task_pool,
**args.training.task_kwargs,
)
pbar = tqdm(range(starting_step, args.training.train_steps))
# log also when i+1 == args.training.train_steps
num_training_examples = args.training.num_training_examples
num_accum_steps = args.training.num_accum_steps
optimizer.zero_grad()
log_loss = 0.
log_point_wise_loss = 0.
# outputs_list = []
for i in pbar:
if (i % num_accum_steps == 0):
log_loss = 0.
log_point_wise_loss = torch.zeros(size=(curriculum.n_points,), dtype=torch.float32).cuda()
data_sampler_args = {}
task_sampler_args = {}
if "sparse_linear_regression" in args.training.task:
task_sampler_args["valid_coords"] = curriculum.n_dims_truncated
if num_training_examples is not None:
assert num_training_examples >= bsize
seeds = sample_seeds(num_training_examples, bsize)
data_sampler_args["seeds"] = seeds
task_sampler_args["seeds"] = [s + 1 for s in seeds]
if "fourier_series" in args.training.task:
args.training.task_kwargs["max_frequency"] = curriculum.max_freq
task_sampler = get_task_sampler(
args.training.task,
n_dims,
bsize,
num_tasks=args.training.num_tasks,
**args.training.task_kwargs,
)
elif args.training.task == "random_fourier_features":
args.training.task_kwargs["rff_dim"] = curriculum.rff_dim
task_sampler = get_task_sampler(
args.training.task,
n_dims,
bsize,
num_tasks=args.training.num_tasks,
**args.training.task_kwargs,
)
# pdb.set_trace()
task = task_sampler(**task_sampler_args)
# curriculum.n_points = (
# task.get_bound() + 1 if "_cs" in args.training.task else curriculum.n_points
# )
xs = data_sampler.sample_xs(
curriculum.n_points,
bsize,
curriculum.n_dims_truncated,
**data_sampler_args,
)
# import time
# start = time.time()
if isinstance(task, PolynomialsUnbiasedPoints):
assert n_dims==1, "n_dims is not 1, please change sampling logic for ys s.t. it is from same distribution as xs but is of shape [batch, n_points]"
# form the batch of ys w/ or w/o rejection sampling as needed
ys, _ = task.rejection_sample_to_form_batch(xs, data_sampler, data_sampler_args, bsize, curriculum.n_points, excess_tensors)
else:
ys = task.evaluate(xs)
# end = time.time()
# print("time",end - start)
# outputs_list.append(ys)
# fname='save_op.pkl'
# if i % 1000 == 0:
# with open(fname, 'wb') as handle:
# pickle.dump(outputs_list, handle, protocol=pickle.HIGHEST_PROTOCOL)
loss_func = task.get_training_metric()
loss, output = train_step(
model,
xs.cuda(),
ys.cuda(),
optimizer,
loss_func,
batch_idx=i,
max_train_steps=args.training.train_steps,
k_steps_for_loss=args.training.k_steps_for_loss,
num_accum_steps=num_accum_steps,
lr_scheduler=lr_scheduler,
)
log_loss += loss
point_wise_tags = list(range(curriculum.n_points))
point_wise_loss_func = task.get_metric()
point_wise_loss = point_wise_loss_func(output, ys.cuda()).mean(dim=0)
point_wise_loss = point_wise_loss/num_accum_steps
log_point_wise_loss += point_wise_loss
baseline_loss = (
sum(
max(curriculum.n_dims_truncated - ii, 0)
for ii in range(curriculum.n_points)
)
/ curriculum.n_points
)
if (
(i+1 == num_accum_steps or # first log when num_accum_steps are over -- this is equiv. to log at step=0 for non-accumulation training
(i > 0 and (i+1) % args.wandb.log_every_steps == 0) or # log during training whenever we pass the logging interval
i+1 == args.training.train_steps) # log at the last train step
and not args.test_run
):
wandb.log(
{
"overall_loss": log_loss * loss_scaling_factor,
"excess_loss": log_loss * loss_scaling_factor / baseline_loss,
"pointwise/loss": dict(
zip(point_wise_tags, log_point_wise_loss.cpu().numpy() * loss_scaling_factor)
),
"n_points": curriculum.n_points,
"n_dims": curriculum.n_dims_truncated,
"max_freq": curriculum.max_freq,
"rff_dim": curriculum.rff_dim,
},
step=(i+1)//num_accum_steps,
)
if (
(i+1 == num_accum_steps or # first log when num_accum_steps are over -- this is equiv. to log at step=0 for non-accumulation training
(i > 0 and (i+1) % args.training.eval_every_steps == 0) or # log during training whenever we pass the logging interval
i+1 == args.training.train_steps) # log at the last train step
and not args.test_run
):
if args.training.task == "two_task_mixer":
task1 = args.training.task_kwargs.get("task1", "linear_regression")
task2 = args.training.task_kwargs.get("task2", "decision_tree")
task_spec_params_dict = args.training.task_kwargs.get(
"task_spec_params_dict", {}
)
task1_kwargs = task_spec_params_dict.get(task1, {})
task2_kwargs = task_spec_params_dict.get(task2, {})
metrics_task1 = eval_model(
model,
task_name=task1,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(task1, args.model.n_dims, task1_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=data_kwargs,
task_sampler_kwargs=task1_kwargs,
)
metrics_task2 = eval_model(
model,
task_name=task2,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(task2, args.model.n_dims, task2_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=data_kwargs,
task_sampler_kwargs=task2_kwargs,
)
wandb_log_task(task1, metrics_task1, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps)
wandb_log_task(task2, metrics_task2, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps)
elif args.training.task == "three_task_mixer":
task1 = args.training.task_kwargs.get("task1", "linear_regression")
task2 = args.training.task_kwargs.get("task2", "decision_tree")
task3 = args.training.task_kwargs.get("task3", "relu_2nn_regression")
task_spec_params_dict = args.training.task_kwargs.get(
"task_spec_params_dict", {}
)
task1_kwargs = task_spec_params_dict.get(task1, {})
task2_kwargs = task_spec_params_dict.get(task2, {})
task3_kwargs = task_spec_params_dict.get(task3, {})
metrics_task1 = eval_model(
model,
task_name=task1,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(task1, args.model.n_dims, task1_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=data_kwargs,
task_sampler_kwargs=task1_kwargs,
)
metrics_task2 = eval_model(
model,
task_name=task2,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(task2, args.model.n_dims, task2_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=data_kwargs,
task_sampler_kwargs=task2_kwargs,
)
metrics_task3 = eval_model(
model,
task_name=task3,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(task3, args.model.n_dims, task3_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=data_kwargs,
task_sampler_kwargs=task3_kwargs,
)
wandb_log_task(task1, metrics_task1, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps)
wandb_log_task(task2, metrics_task2, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps)
wandb_log_task(task3, metrics_task3, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps)
else:
n_dims = args.model.n_dims
eval_task_sampler_kwargs = args.training.task_kwargs
eval_data_kwargs = data_kwargs
if args.training.task == "noisy_lr_task_diversity":
eval_task_sampler_kwargs = copy.deepcopy(args.training.task_kwargs)
eval_task_sampler_kwargs["pool_dict"] = task.pool_dict
eval_data_kwargs = copy.deepcopy(data_kwargs)
eval_data_kwargs["data_seed"] = int(eval_data_kwargs["data_seed"] + time.time())
metrics = eval_model(
model,
task_name=args.training.task,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(args.training.task, args.model.n_dims, args.training.task_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=eval_data_kwargs,
task_sampler_kwargs=eval_task_sampler_kwargs,
excess_tensors_eval=excess_tensors_eval
)
wandb_log_task(args.training.task, metrics, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps, loss_scaling_factor=loss_scaling_factor)
if args.training.eval_ood:
assert args.training.task in ["polynomials_deg2_monomials_selection_unbiased", "noisy_lr_task_diversity", "fourier_series_multitask"], "task is not in the list of tasks for OOD evaluation"
eval_task_sampler_kwargs = args.training.task_kwargs
eval_data_kwargs = data_kwargs
if args.training.task == "noisy_lr_task_diversity":
# eval_task_sampler_kwargs = copy.deepcopy(args.training.task_kwargs)
# eval_task_sampler_kwargs["pool_dict"] = task.pool_dict
eval_data_kwargs = copy.deepcopy(data_kwargs)
eval_data_kwargs["data_seed"] = int(eval_data_kwargs["data_seed"] + time.time())
metrics_ood = eval_model(
model,
task_name=args.training.task,
data_name=args.training.data,
n_dims=args.model.n_dims,
n_points=get_n_points_eval(args.training.task, args.model.n_dims, args.training.task_kwargs, curriculum),
prompting_strategy="standard",
batch_size=64,
data_sampler_kwargs=eval_data_kwargs,
task_sampler_kwargs=eval_task_sampler_kwargs,
excess_tensors_eval=excess_tensors_eval,
eval_ood=True
)
wandb_log_task(args.training.task, metrics_ood, baseline_loss, point_wise_tags, step=(i+1)//num_accum_steps, suffix="_ood", loss_scaling_factor=loss_scaling_factor)
if args.training.log_model_norm:
compute_and_log_model_norm(model, step=(i+1)//num_accum_steps)
curriculum.update()
one_indexed_steps = i + 1
pbar.set_description(f"loss {loss * loss_scaling_factor}")
if (one_indexed_steps % args.training.save_every_steps == 0 or one_indexed_steps == args.training.train_steps) and not args.test_run:
training_state = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"train_step": i, # 0-indexed because this is used while resuming the training
}
torch.save(training_state, state_path)
if (
args.training.keep_every_steps > 0
and ((one_indexed_steps % args.training.keep_every_steps == 0 or one_indexed_steps == args.training.train_steps)
or (args.training.granular_ckpt_till is not None and one_indexed_steps <= args.training.granular_ckpt_till and one_indexed_steps % args.training.granular_ckpt_every == 0))
and not args.test_run
and one_indexed_steps > 0
):
torch.save(model.state_dict(), os.path.join(args.out_dir, f"model_{one_indexed_steps}.pt"))
def main(args):
if args.test_run:
curriculum_args = args.training.curriculum
curriculum_args.points.start = curriculum_args.points.end
curriculum_args.dims.start = curriculum_args.dims.end
args.training.train_steps = 100
else:
wandb.init(
dir=args.out_dir,
project=args.wandb.project,
entity=args.wandb.entity,
config=args.__dict__,
notes=args.wandb.notes,
name=args.wandb.name,
resume=True,
)
model = build_model(args.model)
if args.model.load_model_path is not None:
run_path = os.path.join(args.model.load_model_path)
load_into_model_from_run(model, run_path)
model.cuda()
model.train()
train(model, args)
if not args.test_run:
_ = get_run_metrics(args.out_dir) # precompute metrics for eval
def updateStepsByGradAccumSteps(args):
num_accum_steps = args.training.num_accum_steps
args.training.train_steps *= num_accum_steps
args.training.eval_every_steps *= num_accum_steps
args.training.save_every_steps *= num_accum_steps
args.training.keep_every_steps *= num_accum_steps
args.training.curriculum.dims.interval *= num_accum_steps
args.training.curriculum.points.interval *= num_accum_steps
args.wandb.log_every_steps *= num_accum_steps
if __name__ == "__main__":
parser = QuinineArgumentParser(schema=schema)
args = parser.parse_quinfig()
assert args.model.family in ["gpt2", "lstm"]
print(f"Running with: {args}")
updateStepsByGradAccumSteps(args)
if not args.test_run:
run_id = args.training.resume_id
if run_id is None:
run_id = str(uuid.uuid4())
out_dir = os.path.join(args.out_dir, run_id)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
args.out_dir = out_dir
with open(os.path.join(out_dir, "config.yaml"), "w") as yaml_file:
yaml.dump(args.__dict__, yaml_file, default_flow_style=False)
main(args)