-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExperiment.agda
123 lines (103 loc) · 5.12 KB
/
Experiment.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
module Experiment where
open import Study
-- Preliminary study: combinators in the untyped lambda calculus
-- The K combinator, as a LamTm
kTm : LamTm B0
kTm = lam (lam (var (oz os o')))
-- Now the K combinator, as a LamTmR
-- Why is it LamTmR / B0 and not LamTmR B0?
-- λx. λy. x
kTmR : LamTmR / B0
kTmR = lam (oz os \\ lam (oz o' \\ var only)) ^ oz
-- Let's do the same thing for the s combinator
-- s : (x >> y >> z) >> (x >> y) >> (x >> z)
-- s = λf.λg.λx.f x (g x)
sTm : LamTm B0
sTm = lam (lam (lam ((var (oz os o' o') $ var (oz o' o' os))
$(var (oz o' os o') $ var (oz o' o' os)))))
sTmR : LamTmR / B0
sTmR = lam (oz os \\
lam (oz os \\
lam (oz os \\
app (pair (app (pair (var only ^ oz os o')
(var only ^ oz o' os)
(czz cs' c's)) ^ oz os o' os)
(app (pair (var only ^ oz os o')
(var only ^ oz o' os)
(czz cs' c's)) ^ oz o' os os)
(czz cs' c's css))))) ^ oz
-- Let's recall that S = λx. λy. λz. xz(yz)
tySTm : (A B C : Ty) → Tm LTyD ((A >> B >> C) >> (A >> B) >> (A >> C)) B0
tySTm A B C = [ lam , [ lam , [ lam , [ app , _ , [ app , _ , oz os o' o' #$ <>
, oz o' o' os #$ <> ]
, [ app , _ , oz o' os o' #$ <>
, oz o' o' os #$ <> ] ] ] ] ]
tySTmR : (A B C : Ty) → TmR LTyD ((A >> B >> C) >> (A >> B) >> (A >> C)) B0
tySTmR A B C = [ lam , oz os \\
[ (lam , oz os \\
[ (lam , oz os \\
[ (app , B , pair
( ( oz \\ [ (app , A , pair
((oz \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs'))) ^ oz os o')
((oz \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs'))) ^ oz o' os)
(czz cs' c's)) ]) ^ oz os o' os )
((oz \\ [ (app , A , pair
((oz \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs'))) ^ oz os o')
((oz \\ # ((pair (only ^ oz os) (<> ^ oz o') (czz cs')))) ^ oz o' os)
(czz cs' c's)) ]) ^ oz o' os os)
(czz cs' c's css)) ]) ]) ] ]
-- Now a simpler example, λx.(λy.y)x
ex2Tm : (A : Ty) → Tm LTyD (A >> A) B0
ex2Tm A = [ lam , [ app , _ , [ lam , oz o' os #$ <> ] , oz os #$ <> ] ]
-- The same example, written as a TmR
ex2TmR : (A : Ty) → TmR LTyD (A >> A) B0
ex2TmR A = [ lam , oz os \\ [ app , A , pair
((oz \\ [ lam , oz os \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs')) ]) ^ oz o')
((oz \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs'))) ^ oz os)
(czz c's) ] ]
--------------------------------------------------------------------------------
-- Experiments with substitutions
--------------------------------------------------------------------------------
-- What would be a great term to toy with substitution?
-- We'd like a term with which we can implement a language
-- The same example as before, written with concrete types
ex2TmRConc : TmR LTyD (base >> base) B0
ex2TmRConc = [ lam , oz os \\
[ app , base , pair
((oz \\ [ lam , oz os \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs')) ]) ^ oz o')
((oz \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs'))) ^ oz os)
(czz c's) ] ]
-- So what would we need to perform the substitution in this term? To do the
-- application (λy.y)x, we'd actually want to substitute the y in the body with
-- the x. How would this be said in this framework?
s : HSub LTyD (B0 - (B0 => base)) (B0 - (B0 => base)) (B0 - (B0 => base))
s = record
{ pass = B0
; act = B0 - (B0 => base)
; passive = oz o'
; active = oz os
; parti = czz c's
; passTrg = oz o'
; actBnd = oz os
; images = B0 - ((oz \\ # (pair (only ^ oz os) (<> ^ oz o') (czz cs'))) ^ oz os)
}
-- How can I write the whole evaluation process?
-- Something like
-- ev : ∀{a ctx} → TmR LTyD a ctx → TmR LTyD a ctx
-- ev (# x) = # x
-- ev [ app , tgtType , pair ((x \\ # x₁) ^ thinning) t2 cover ] =
-- [ app , tgtType , pair ((x \\ # x₁) ^ thinning) ({!ev t2!} ^ _) cover ]
-- ev [ app , tgtType , pair ((x \\ [ x₁ ]) ^ thinning) t2 cover ] = {!!}
-- ev [ lam , snd ] = {!!}
-- ev : ∀{a ctx} → TmR LTyD a / ctx → TmR LTyD a / ctx
-- ev (# x ^ thinning) = # x ^ thinning
-- ev ([ app , t2Type , pair ((x \\ # x₁) ^ thinning₁) ((oz \\ x₃) ^ thinning₂) cover ] ^ thinning) = {!!}
-- -- = [ app , t2Type , pair ((x \\ # x₁) ^ thinning₁) {!t2!} {!!} ] ^ {!!}
-- ev ([ app , t2Type , pair ((x \\ [ x₁ ]) ^ thinning₁) t2 cover ] ^ thinning) = {!!}
-- ev ([ lam , snd ] ^ thinning) = {!!}
ev : ∀{a ctx} → TmR LTyD a ctx → TmR LTyD a / ctx
ev (# x) = # x ^ oi
ev [ app , t2T , pair ((oz \\ # x₁) ^ thinning) ((oz \\ x₂) ^ thinning₁) cover ] -- = {!!}
= [ (app , t2T , pair {!!} {!!} {!!}) ] ^ oi
ev [ app , t2T , pair ((oz \\ [ x ]) ^ thinning) t2 cover ] = {!!}
ev [ lam , snd ] = {!!}