-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathrun_all_er_magellan.py
78 lines (69 loc) · 1.9 KB
/
run_all_er_magellan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import time
datasets = """Dirty/DBLP-ACM
Dirty/DBLP-GoogleScholar
Dirty/iTunes-Amazon
Dirty/Walmart-Amazon
Structured/Amazon-Google
Structured/Beer
Structured/DBLP-ACM
Structured/DBLP-GoogleScholar
Structured/Fodors-Zagats
Structured/iTunes-Amazon
Structured/Walmart-Amazon
Textual/Abt-Buy
Textual/Company""".split('\n')
special_datasets = {
'Structured/Beer': (32, 40),
'Structured/iTunes-Amazon': (32, 40),
'Structured/Fodors-Zagats': (32, 40),
'Dirty/iTunes-Amazon': (32, 40),
'Textual/Company': (32, 3)
}
ops = """swap
swap
append_col
del
swap
drop_col
swap
swap
append_col
drop_col
drop_col
swap
del""".split('\n')
lms = ['roberta', 'roberta', 'roberta', 'roberta', 'roberta', 'roberta',
'roberta', 'roberta', 'roberta', 'roberta', 'roberta', 'roberta', 'bert']
# lms = ['xlnet', 'roberta', 'roberta', 'roberta', 'xlnet', 'bert',
# 'bert', 'xlnet', 'roberta', 'bert', 'roberta', 'roberta', 'bert']
# lms = """distilbert
# bert
# xlnet
# roberta""".split('\n')
for dataset, op, lm in zip(datasets, ops, lms):
if dataset in special_datasets:
batch_size, epochs = special_datasets[dataset]
else:
batch_size, epochs = 32, 15
for da in [True, False]:
for dk in [True, False]:
for run_id in range(5):
cmd = """CUDA_VISIBLE_DEVICES=3 python train_ditto.py \
--task %s \
--logdir results_ditto/ \
--finetuning \
--batch_size %d \
--lr 3e-5 \
--fp16 \
--lm %s \
--n_epochs %d \
--run_id %d""" % (dataset, batch_size, lm, epochs, run_id)
if 'Company' in dataset:
cmd += ' --summarize'
if da:
cmd += ' --da %s' % op
if dk:
cmd += ' --dk general'
print(cmd)
os.system(cmd)