forked from amerand/SPIPS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dpfit.py
715 lines (644 loc) · 25.5 KB
/
dpfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
import scipy.optimize
import numpy as np
from numpy import linalg
import time
from matplotlib import pyplot as plt
import dpfunc
from dpfunc import *
"""
IDEA: fit Y = F(X,A) where A is a dictionnary describing the
parameters of the function.
note that the items in the dictionnary should all be scalar!
author: amerand@eso.org
Tue 29 Jan 2013 17:03:21 CLST: working on adding correlations -> NOT WORKING!!!
Thu 28 Feb 2013 12:34:31 CLST: correcting leading to x2 for chi2 display
Mon 8 Apr 2013 10:51:03 BRT: alternate algorithms
Wed Aug 19 14:26:24 UTC 2015: updated randomParam
http://www.rhinocerus.net/forum/lang-idl-pvwave/355826-generalized-least-squares.html
"""
verboseTime=time.time()
Ncalls=0
def example():
"""
very simple example
"""
# -- generate data set
X = np.linspace(-3.2,3.2,40)
Y = -0.7 - 0.4*X + 0.2*X**2 + .05*X**3
#Y += 0.3*np.random.randn(len(X))
Y += 0.4*np.sin(14*X) # --predictible errors
E = np.ones(len(X))*0.3
# -- do the fit
fit = leastsqFit(dpfunc.polyN, X,
{'A0':0.0, 'A1':0., 'A2':0, 'A3':0.0},
Y, err=E, verbose=2, doNotFit=[],)
# -- display parameters as error ellipses:
plotCovMatrix(fit, fig=0)
# -- display data and best fit model
plt.figure(1)
plt.clf()
plt.errorbar(X, Y, yerr=E, label='data', fmt='o')
plt.plot(X, fit['model'], '-g', linewidth=2, label='fit')
# -- show uncertainties in the model
fit = randomParam(fit)
plt.fill_between(fit['x'], fit['r_ym1s'], fit['r_yp1s'], color='g',
label='fit uncertainty', alpha=0.3)
plt.legend(loc='upper center')
return
def exampleBootstrap(centered=True):
x = np.linspace(-0.02,1.73,36)
if centered:
x0 = x.mean() # reduces correlations
else:
x0 = 0 # lead to correlations and biases
a = {'A0':9085., 'A1':-7736., 'A2':4781.0, 'A3':-1343.}
y = dpfunc.polyN(x,a)
a_ = leastsqFit(dpfunc.polyN, x-x0, a, y, verbose=0)['best']
fits = []
e = np.ones(len(x))*50
y += np.random.randn(len(x))*e
fits = bootstrap(dpfunc.polyN, x-x0, a_, y, err=e, verbose=1,
fitOnly=['A0','A1','A2','A3'])
#-- all bootstraped fit, with average value and error bar:
plotCovMatrix(fits[1:], fig=0)
#-- first fit (with all data points), with error elipses:
plotCovMatrix(fits[0], fig=None)
#-- true value
N = len(fits[0]['fitOnly'])
for i,ki in enumerate(fits[0]['fitOnly']):
for j,kj in enumerate(fits[0]['fitOnly']):
plt.subplot(N,N,i+N*j+1)
xl = plt.xlim()
if i!=j:
plt.plot(a_[ki], a_[kj], 'oc', markersize=10, alpha=0.5,
label='true')
else:
plt.vlines(a_[ki], 0, 0.99*plt.ylim()[1], color='c',
linewidth=3, alpha=0.5, label='true')
plt.legend(loc='center right', prop={'size':7},
numpoints=1)
plt.figure(1)
plt.clf()
label='bootstraping'
for f in fits[1:]:
plt.plot(x, dpfunc.polyN(x-x0,f['best']),'-', alpha=0.1, color='0.3',
label=label)
label=''
plt.errorbar(x,y,marker='o',color='k',yerr=e, linestyle='none',
label='data')
plt.plot(x,fits[0]['model'], '-b', linewidth=3, label='all points fit')
plt.plot(x,dpfunc.polyN(x-x0,a_), '-c', linewidth=3, label='true')
plt.legend()
return
def exampleCorrelation():
"""
very simple example with correlated error bars
<<< DOES NOT WORK! >>>
"""
# -- generate fake data:
noise, offset = 0.2, 0.0
X = np.linspace(0,10,100)
Y = 0.0+1.0*np.sin(2*np.pi*X/1.2)
Y += noise*np.random.randn(len(X))
# -- errors:
E = np.ones(len(X), )*np.sqrt(noise**2+offset**2)
# -- correlations:
C = np.ones((len(X), len(X)))
rho = offset/np.sqrt(noise**2+offset**2)
for k in range(10):
Y[k*len(X)/10:(k+1)*len(X)/10]+=np.random.randn()*offset
C[k*len(X)/10:(k+1)*len(X)/10,
k*len(X)/10:(k+1)*len(X)/10] = rho
C *= offset*noise
C[range(len(X)), range(len(X))] = noise**2+offset**2
print '#'*12, 'without correlations', '#'*12
E = np.ones(len(X), )*noise
fit=leastsqFit(dpfunc.fourier, X,
{'A0':0.1, 'A1':1.,'PHI1':0., 'WAV':1.2},
Y, err=E, verbose=1, normalizedUncer=0)
print fit['info']['fjac'].shape
plt.figure(0)
plt.clf()
plt.errorbar(X,Y,yerr=E,linestyle='none', fmt='.')
plt.plot(X,fit['model'], color='r')
plt.title('without correlations')
print '#'*12, 'with correlations', '#'*12
#print np.round(E, 2)
fit=leastsqFit(dpfunc.fourier, X,
{'A0':0.1, 'A1':1.1,'PHI1':0., 'WAV':1.2},
Y, err=linalg.inv(C), verbose=1, normalizedUncer=0)
print fit['info']['fjac'].shape
plt.figure(1)
plt.clf()
plt.errorbar(X,Y,yerr=np.sqrt(np.diag(C)),linestyle='none', fmt='.')
plt.plot(X,fit['model'], color='r')
plt.title('with correlations')
return
def meta(x, params):
"""
allows to call any combination of function defines inside dpfunc:
params={'funcA;1:p1':, 'funcA;1:p2':,
'funcA;2:p1':, 'funcA;2:p2':,
'funcB:p1':, etc}
funcA and funcB should be defined in dpfunc.py. Allows to call many
instances of the same function (here funcA) and combine different functions.
Outputs of the difference functions will be sumed usinf operator '+'. """
# -- list of functions:
funcs = set([k.strip().split(':')[0].strip() for k in params.keys()])
#print funcs
res = 0
for f in funcs: # for each function
# -- keep only relevant keywords
kz = filter(lambda k: k.strip().split(':')[0].strip()==f, params.keys())
tmp = {}
for k in kz:
# -- build temporary dict pf parameters
tmp[k.split(':')[1].strip()]=params[k]
ff = f.split(';')[0].strip() # actual function name
if not dpfunc.__dict__.has_key(ff):
raise NameError(ff+' not defined in dpfunc')
# -- add to result the function result
res += dpfunc.__dict__[ff](x, tmp)
return res
Ncalls=0
def leastsqFit(func, x, params, y, err=None, fitOnly=None,
verbose=False, doNotFit=[], epsfcn=1e-7,
ftol=1e-5, fullOutput=True, normalizedUncer=True,
follow=None, maxfev=200, showBest=True):
"""
- params is a Dict containing the first guess.
- fits 'y +- err = func(x,params)'. errors are optionnal. in case err is a
ndarray of 2 dimensions, it is treated as the covariance of the
errors.
np.array([[err1**2, 0, .., 0],
[0, err2**2, 0, .., 0],
[0, .., 0, errN**2]]) is the equivalent of 1D errors
- follow=[...] list of parameters to "follow" in the fit, i.e. to print in
verbose mode
- fitOnly is a LIST of keywords to fit. By default, it fits all
parameters in 'params'. Alternatively, one can give a list of
parameters not to be fitted, as 'doNotFit='
- doNotFit has a similar purpose: for example if params={'a0':,
'a1': 'b1':, 'b2':}, doNotFit=['a'] will result in fitting only
'b1' and 'b2'. WARNING: if you name parameter 'A' and another one 'AA',
you cannot use doNotFit to exclude only 'A' since 'AA' will be excluded as
well...
- normalizedUncer=True: the uncertainties are independent of the Chi2, in
other words the uncertainties are scaled to the Chi2. If set to False, it
will trust the values of the error bars: it means that if you grossely
underestimate the data's error bars, the uncertainties of the parameters
will also be underestimated (and vice versa).
returns dictionary with:
'best': bestparam,
'uncer': uncertainties,
'chi2': chi2_reduced,
'model': func(x, bestparam)
'cov': covariance matrix (normalized if normalizedUncer)
'fitOnly': names of the columns of 'cov'
"""
global Ncalls
# -- fit all parameters by default
if fitOnly is None:
if len(doNotFit)>0:
fitOnly = filter(lambda x: x not in doNotFit, params.keys())
else:
fitOnly = params.keys()
fitOnly.sort() # makes some display nicer
# -- build fitted parameters vector:
pfit = [params[k] for k in fitOnly]
# -- built fixed parameters dict:
pfix = {}
for k in params.keys():
if k not in fitOnly:
pfix[k]=params[k]
if verbose:
print '[dpfit] %d FITTED parameters:'%(len(fitOnly)), fitOnly
# -- actual fit
Ncalls=0
plsq, cov, info, mesg, ier = \
scipy.optimize.leastsq(_fitFunc, pfit,
args=(fitOnly,x,y,err,func,pfix,verbose,follow,),
full_output=True, epsfcn=epsfcn, ftol=ftol,
maxfev=maxfev)
if verbose:
print '[dpfit]', mesg
print '[dpfit] number of function call:', info['nfev']
if cov is None:
cov = np.zeros((len(fitOnly), len(fitOnly)))
if isinstance(err, np.ndarray) and len(err.shape)==2:
print cov
# -- best fit -> agregate to pfix
for i,k in enumerate(fitOnly):
pfix[k] = plsq[i]
# -- reduced chi2
model = func(x,pfix)
tmp = _fitFunc(plsq, fitOnly, x, y, err, func, pfix)
try:
chi2 = (np.array(tmp)**2).sum()
except:
chi2=0.0
for x in tmp:
chi2+=np.sum(x**2)
reducedChi2 = chi2/float(np.sum([1 if np.isscalar(i) else
len(i) for i in tmp])-len(pfit)+1)
if not np.isscalar(reducedChi2):
reducedChi2 = np.mean(reducedChi2)
# -- uncertainties:
uncer = {}
for k in pfix.keys():
if not k in fitOnly:
uncer[k]=0 # not fitted, uncertatinties to 0
else:
i = fitOnly.index(k)
if cov is None:
uncer[k]= -1
else:
uncer[k]= np.sqrt(np.abs(np.diag(cov)[i]))
if normalizedUncer:
uncer[k] *= np.sqrt(reducedChi2)
if verbose:
print '-'*30
print 'REDUCED CHI2=', reducedChi2
print '-'*30
if normalizedUncer:
print '(uncertainty normalized to data dispersion)'
else:
print '(uncertainty assuming error bars are correct)'
tmp = pfix.keys(); tmp.sort()
maxLength = np.max(np.array([len(k) for k in tmp]))
format_ = "'%s':"
# -- write each parameter and its best fit, as well as error
# -- writes directly a dictionnary
if showBest:
print '' # leave some space to the eye
for ik,k in enumerate(tmp):
padding = ' '*(maxLength-len(k))
formatS = format_+padding
if ik==0:
formatS = '{'+formatS
if uncer[k]>0:
ndigit = -int(np.log10(uncer[k]))+3
print formatS%k , round(pfix[k], ndigit), ',',
print '# +/-', round(uncer[k], ndigit)
elif uncer[k]==0:
if isinstance(pfix[k], str):
print formatS%k , "'"+pfix[k]+"'", ','
else:
print formatS%k , pfix[k], ','
else:
print formatS%k , pfix[k], ',',
print '# +/-', uncer[k]
print '}' # end of the dictionnary
try:
if verbose>1:
print '-'*3, 'correlations:', '-'*15
N = np.max([len(k) for k in fitOnly])
N = min(N,20)
N = max(N,5)
sf = '%'+str(N)+'s'
print ' '*N,
for k2 in fitOnly:
print sf%k2,
print ''
sf = '%-'+str(N)+'s'
for k1 in fitOnly:
i1 = fitOnly.index(k1)
print sf%k1 ,
for k2 in fitOnly:
i2 = fitOnly.index(k2)
if k1!=k2:
print ('%'+str(N)+'.2f')%(cov[i1,i2]/
np.sqrt(cov[i1,i1]*cov[i2,i2])),
else:
print ' '*(N-4)+'-'*4,
print ''
print '-'*30
except:
pass
# -- result:
if fullOutput:
if normalizedUncer:
try:
cov *= reducedChi2
except:
pass
#print cov
cor = np.sqrt(np.diag(cov))
cor = cor[:,None]*cor[None,:]
cor = cov/cor
pfix={'best':pfix, 'uncer':uncer,
'chi2':reducedChi2, 'model':model,
'cov':cov, 'fitOnly':fitOnly,
'info':info, 'cor':cor, 'x':x, 'y':y, 'err':err, 'func':func}
return pfix
def randomParam(fit, N=None, x=None):
"""
get a set of randomized parameters (list of dictionnaries) around the best
fited value, using a gaussian probability, taking into account the correlations
from the covariance matrix.
fit is the result of leastsqFit (dictionnary)
returns a fit dictionnary with: 'ymin', 'ymax' and 'r_param' (a list of the
randomized parameters)
"""
if N is None:
N = len(fit['x'])
m = np.array([fit['best'][k] for k in fit['fitOnly']])
res = [] # list of dictionnaries
for k in range(N):
p = dict(zip(fit['fitOnly'],np.random.multivariate_normal(m, fit['cov'])))
p.update({k:fit['best'][k] for k in fit['best'].keys() if not k in
fit['fitOnly']})
res.append(p)
ymin, ymax = None, None
tmp = []
if x is None:
x = fit['x']
for r in res:
tmp.append(fit['func'](x, r))
tmp = np.array(tmp)
fit['r_param'] = res
fit['r_ym1s'] = np.percentile(tmp, 16, axis=0)
fit['r_yp1s'] = np.percentile(tmp, 84, axis=0)
fit['r_x'] = x
fit['r_y'] = fit['func'](x, fit['best'])
fit['all_y'] = tmp
return fit
randomParam = randomParam # legacy
def bootstrap(func, x, params, y, err=None, fitOnly=None,
verbose=False, doNotFit=[], epsfcn=1e-7,
ftol=1e-5, fullOutput=True, normalizedUncer=True,
follow=None, Nboot=None):
"""
bootstraping, called like leastsqFit. returns a list of fits: the first one
is the 'normal' one, the Nboot following one are with ramdomization of data. If
Nboot is not given, it is set to 10*len(x).
"""
if Nboot==None:
Nboot = 10*len(x)
# first fit is the "normal" one
fits = [leastsqFit(func, x, params, y,
err=err, fitOnly=fitOnly, verbose=False,
doNotFit=doNotFit, epsfcn=epsfcn,
ftol=ftol, fullOutput=True,
normalizedUncer=True)]
for k in range(Nboot):
s = np.int_(len(x)*np.random.rand(len(x)))
fits.append(leastsqFit(func, x[s], params, y[s],
err=err, fitOnly=fitOnly, verbose=False,
doNotFit=doNotFit, epsfcn=epsfcn,
ftol=ftol, fullOutput=True,
normalizedUncer=True))
return fits
def randomize(func, x, params, y, err=None, fitOnly=None,
verbose=False, doNotFit=[], epsfcn=1e-7,
ftol=1e-5, fullOutput=True, normalizedUncer=True,
follow=None, Nboot=None):
"""
bootstraping, called like leastsqFit. returns a list of fits: the first one
is the 'normal' one, the Nboot following one are with ramdomization of data. If
Nboot is not given, it is set to 10*len(x).
"""
if Nboot==None:
Nboot = 10*len(x)
# first fit is the "normal" one
fits = [leastsqFit(func, x, params, y,
err=err, fitOnly=fitOnly, verbose=False,
doNotFit=doNotFit, epsfcn=epsfcn,
ftol=ftol, fullOutput=True,
normalizedUncer=True)]
for k in range(Nboot):
s = err*np.random.randn(len(y))
fits.append(leastsqFit(func, x, params, y+s,
err=err, fitOnly=fitOnly, verbose=False,
doNotFit=doNotFit, epsfcn=epsfcn,
ftol=ftol, fullOutput=True,
normalizedUncer=True))
return fits
def _fitFunc(pfit, pfitKeys, x, y, err=None, func=None,
pfix=None, verbose=False, follow=None):
"""
interface to leastsq from scipy:
- x,y,err are the data to fit: f(x) = y +- err
- pfit is a list of the paramters
- pfitsKeys are the keys to build the dict
pfit and pfix (optional) and combines the two
in 'A', in order to call F(X,A)
in case err is a ndarray of 2 dimensions, it is treated as the
covariance of the errors.
np.array([[err1**2, 0, .., 0],
[ 0, err2**2, 0, .., 0],
[0, .., 0, errN**2]]) is the equivalent of 1D errors
"""
global verboseTime, Ncalls
Ncalls+=1
params = {}
# -- build dic from parameters to fit and their values:
for i,k in enumerate(pfitKeys):
params[k]=pfit[i]
# -- complete with the non fitted parameters:
for k in pfix:
params[k]=pfix[k]
if err is None:
err = np.ones(np.array(y).shape)
# -- compute residuals
if type(y)==np.ndarray and type(err)==np.ndarray:
if len(err.shape)==2:
# -- using correlations
tmp = func(x,params)
#res = np.dot(np.dot(tmp-y, linalg.inv(err)), tmp-y)
res = np.dot(np.dot(tmp-y, err), tmp-y)
res = np.ones(len(y))*np.sqrt(res/len(y))
else:
# -- assumes y and err are a numpy array
y = np.array(y)
res= ((func(x,params)-y)/err).flatten()
else:
# much slower: this time assumes y (and the result from func) is
# a list of things, each convertible in np.array
res = []
tmp = func(x,params)
if np.isscalar(err):
err = 0*y + err
#print 'DEBUG:', tmp.shape, y.shape, err.shape
for k in range(len(y)):
df = (np.array(tmp[k])-np.array(y[k]))/np.array(err[k])
try:
res.extend(list(df))
except:
res.append(df)
if verbose and time.time()>(verboseTime+5):
verboseTime = time.time()
print '[dpfit]', time.asctime(), '%5d'%Ncalls,
try:
chi2=(res**2).sum/(len(res)-len(pfit)+1.0)
print 'CHI2: %6.4e'%chi2,
except:
# list of elements
chi2 = 0
N = 0
res2 = []
for r in res:
if np.isscalar(r):
chi2 += r**2
N+=1
res2.append(r)
else:
chi2 += np.sum(np.array(r)**2)
N+=len(r)
res2.extend(list(r))
res = res2
print 'CHI2: %6.4e'%(chi2/float(N-len(pfit)+1)),
if follow is None:
print ''
else:
_follow = filter(lambda x: params.has_key(x), follow)
print ' '.join([k+'='+'%5.2e'%params[k] for k in _follow])
return res
def _ellParam(sA2, sB2, sAB):
"""
sA2 is the variance of param A
sB2 is the variance of param B
sAB = rho*sA*sB the diagonal term (rho: correlation)
returns the semi-major axis, semi-minor axis and orientation (in rad) of the
ellipse.
sMa, sma, a = ellParam(...)
t = np.linspace(0,2*np.pi,100)
X,Y = sMa*np.cos(t), sma*np.sin(t)
X,Y = X*np.cos(a)+Y*np.sin(a), Y*np.cos(a)-X*np.sin(a)
ref: http://www.scribd.com/doc/50336914/Error-Ellipse-2nd
"""
a = np.arctan2(2*sAB, (sB2-sA2))/2
sMa = np.sqrt(1/2.*(sA2+sB2-np.sqrt((sA2-sB2)**2+4*sAB**2)))
sma = np.sqrt(1/2.*(sA2+sB2+np.sqrt((sA2-sB2)**2+4*sAB**2)))
return sMa, sma, a
def dispCor(fit):
# -- parameters names:
nmax = np.max([len(x) for x in fit['fitOnly']])
fmt = '%%%ds'%nmax
fmt = '%2d:'+fmt
print '|Correlations| ',
print'\033[45m>=.9\033[0m',
print'\033[41m>=.8\033[0m',
print'\033[43m>=.7\033[0m',
print'\033[100m>=.5\033[0m',
print'\033[0m>=.2\033[0m',
print'\033[90m<.2\033[0m'
print ' '*(2+nmax),
for i in range(len(fit['fitOnly'])):
print '%3d'%i,
print ''
for i,p in enumerate(fit['fitOnly']):
print fmt%(i,p),
for j, x in enumerate(fit['cor'][i,:]):
if i==j:
c = '\033[2m'
else:
c = '\033[0m'
if i!=j:
if abs(x)>=0.9:
col = '\033[45m'
elif abs(x)>=0.8:
col = '\033[41m'
elif abs(x)>=0.7:
col = '\033[43m'
elif abs(x)>=0.5:
col = '\033[100m'
elif abs(x)<0.2:
col = '\033[90m'
else:
col = ''
else:
col = ''
tmp = '%4.1f'%x
tmp = tmp.replace('0.', '.')
tmp = tmp.replace('1.0', '1.')
if i==j:
tmp = '###'
print c+col+tmp+'\033[0m',
print ''
def plotCovMatrix(fit, fig=0):
if not fig is None:
plt.figure(fig)
plt.clf()
else:
# overplot
pass
t = np.linspace(0,2*np.pi,100)
if isinstance(fit , dict):
fitOnly = fit['fitOnly']
N = len(fit['fitOnly'])
else:
fitOnly = fit[0]['fitOnly']
N = len(fit[0]['fitOnly'])
for i in range(N):
for j in range(N):
if i!=j:
ax = plt.subplot(N, N, i+j*N+1)
if isinstance(fit , dict):
sMa, sma, a = _ellParam(fit['cov'][i,i], fit['cov'][j,j], fit['cov'][i,j])
X,Y = sMa*np.cos(t), sma*np.sin(t)
X,Y = X*np.cos(a)+Y*np.sin(a),-X*np.sin(a)+Y*np.cos(a)
plt.errorbar(fit['best'][fitOnly[i]],
fit['best'][fitOnly[j]],
xerr=np.sqrt(fit['cov'][i,i]),
yerr=np.sqrt(fit['cov'][j,j]), color='b',
linewidth=1, alpha=0.5, label='single fit')
plt.plot(fit['best'][fitOnly[i]]+X,
fit['best'][fitOnly[j]]+Y,'-b',
label='cov. ellipse')
else: ## assumes case of bootstraping
plt.plot([f['best'][fitOnly[i]] for f in fit],
[f['best'][fitOnly[j]] for f in fit],
'.', color='0.5', alpha=0.4, label='bootstrap')
plt.errorbar(np.mean([f['best'][fitOnly[i]] for f in fit]),
np.mean([f['best'][fitOnly[j]] for f in fit]),
xerr=np.mean([f['uncer'][fitOnly[i]] for f in fit]),
yerr=np.mean([f['uncer'][fitOnly[j]] for f in fit]),
color='k', linewidth=1, alpha=0.5,
label='boot. avg')
#plt.legend(loc='upper right', prop={'size':7}, numpoints=1)
if not fig is None:
if isinstance(fit , dict):
if j==N-1 or j+1==i:
plt.xlabel(fitOnly[i])
if i==0 or j+1==i:
plt.ylabel(fitOnly[j])
else:
if j==N-1:
plt.xlabel(fitOnly[i])
if i==0:
plt.ylabel(fitOnly[j])
if i==j and not isinstance(fit , dict):
ax = plt.subplot(N, N, i+j*N+1)
X = [f['best'][fitOnly[i]] for f in fit]
h = plt.hist(X, color='0.8',bins=max(len(fit)/30, 3))
a = {'MU':np.median(X), 'SIGMA':np.std(X), 'AMP':len(X)/10.}
g = leastsqFit(dpfunc.gaussian, 0.5*(h[1][1:]+h[1][:-1]), a, h[0])
plt.plot(0.5*(h[1][1:]+h[1][:-1]), g['model'], 'r')
plt.errorbar(g['best']['MU'], g['best']['AMP']/2,
xerr=g['best']['SIGMA'], color='r',
marker='o', label='gauss fit')
plt.text(g['best']['MU'], 1.1*g['best']['AMP'],
r'%s = %4.2e $\pm$ %4.2e'%(fitOnly[i],
g['best']['MU'],
g['best']['SIGMA']),
color='r', va='center', ha='center')
print '%s = %4.2e +/- %4.2e'%(fitOnly[i],
g['best']['MU'],
g['best']['SIGMA'])
plt.ylim(0,max(plt.ylim()[1], 1.2*g['best']['AMP']))
if not fig is None:
if j==N-1:
plt.xlabel(fitOnly[i])
if i==0:
plt.ylabel(fitOnly[j])
plt.legend(loc='lower center', prop={'size':7},
numpoints=1)
#--
try:
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(8)
except:
pass
return