-
Notifications
You must be signed in to change notification settings - Fork 9
/
example_pet_strongly_convex.py
485 lines (387 loc) · 16.1 KB
/
example_pet_strongly_convex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright 2018 Matthias J. Ehrhardt, University of Cambridge
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
"""An example of using the SPDHG algorithm to solve a PET reconstruction
problem with a strongly convex total variation prior. We exploit the smoothness
of the data term and the strong convexity of the prior to obtain a linearly
convergent algorithm. We compare different algorithms for this problem and
visualize the results as in [CERS2017].
Note that this example uses the ASTRA toolbox https://www.astra-toolbox.com/.
Reference
---------
[CERS2017] A. Chambolle, M. J. Ehrhardt, P. Richtarik and C.-B. Schoenlieb,
*Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling
and Imaging Applications*. ArXiv: http://arxiv.org/abs/1706.04957 (2017).
"""
from __future__ import division, print_function
import os
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import brewer2mpl
import odl
import odl.contrib.datasets.images as images
from stochastic_primal_dual_hybrid_gradient import spdhg, spdhg_pesquet
import misc
# create folder structure and set parameters
folder_out = '.' # to be changed
filename = 'example_pet_strongly_convex'
nepoch = 100
niter_target = 2000
subfolder = '{}epochs'.format(nepoch)
nvoxelx = 250 # set problem size
filename = '{}_{}x{}'.format(filename, nvoxelx, nvoxelx)
folder_main = '{}/{}'.format(folder_out, filename)
if not os.path.exists(folder_main):
os.makedirs(folder_main)
folder_today = '{}/{}'.format(folder_main, subfolder)
if not os.path.exists(folder_today):
os.makedirs(folder_today)
folder_npy = '{}/npy'.format(folder_today)
if not os.path.exists(folder_npy):
os.makedirs(folder_npy)
# set latex options
matplotlib.rc('text', usetex=False)
# create geometry of operator
X = odl.uniform_discr(min_pt=[-1, -1], max_pt=[1, 1],
shape=[nvoxelx, nvoxelx], dtype='float32')
geometry = odl.tomo.parallel_beam_geometry(X, num_angles=200, det_shape=250)
G = odl.BroadcastOperator(*[odl.tomo.RayTransform(X, gi, impl='astra_cpu')
for gi in geometry])
# create ground truth
Y = G.range
groundtruth = X.element(images.brain_phantom(shape=X.shape))
clim = [0, 1]
tol_norm = 1.05
# save images and data
file_data = '{}/data.npy'.format(folder_main)
if not os.path.exists(file_data):
sinogram = G(groundtruth)
support = X.element(groundtruth.ufuncs.greater(0))
factors = -G(0.005 / X.cell_sides[0] * support)
factors.ufuncs.exp(out=factors)
counts_observed = (factors * sinogram).ufuncs.sum()
counts_desired = 3e+6
counts_background = 2e+6
factors *= counts_desired / counts_observed
sinogram_support = sinogram.ufuncs.greater(0)
smoothed_support = Y.element(
[gaussian_filter(sino_support, sigma=[1, 2 / X.cell_sides[0]])
for sino_support in sinogram_support])
background = 10 * smoothed_support + 10
background *= counts_background / background.ufuncs.sum()
data = odl.phantom.poisson_noise(factors * sinogram + background,
seed=1807)
arr = np.empty(3, dtype=object)
arr[0] = data
arr[1] = factors
arr[2] = background
np.save(file_data, arr)
misc.save_image(groundtruth, 'groundtruth', folder_main, 1, clim=clim)
fig2 = plt.figure(2)
fig2.clf()
i = 0
plt.plot((sinogram[i]).asarray()[0], label='G(x)')
plt.plot((factors[i] * sinogram[i]).asarray()[0], label='factors * G(x)')
plt.plot(data[i].asarray()[0], label='data')
plt.plot(background[i].asarray()[0], label='background')
plt.legend()
fig2.savefig('{}/components1D.png'.format(folder_main),
bbox_inches='tight')
else:
(data, factors, background) = np.load(file_data, allow_pickle=True)
# data fit
f = odl.solvers.SeparableSum(
*[misc.KullbackLeiblerSmooth(Yi, yi, ri)
for Yi, yi, ri in zip(Y, data, background)])
# prior and regularisation parameter
g = misc.TotalVariationNonNegative(X, alpha=5e-2, strong_convexity=5e-1)
g.prox_options['niter'] = 20
# operator
A = odl.BroadcastOperator(*[fi * Gi for fi, Gi in zip(factors, G)])
obj_fun = f * A + g # objective functional
rho = 0.99 # square root of step size upper bound
# define strong convexity constants
mu_i = [fi.convex_conj.strong_convexity for fi in f]
mu_f = np.min(mu_i)
mu_g = g.strong_convexity
# create target / compute a saddle point
file_target = '{}/target.npy'.format(folder_main)
if not os.path.exists(file_target):
file_normA = '{}/norms_{}subsets.npy'.format(folder_main, 1)
if not os.path.exists(file_normA):
# compute norm of operator
normA = [tol_norm * A.norm(estimate=True)]
np.save(file_normA, normA)
else:
normA = np.load(file_normA)
# set step size parameters
kappa = np.sqrt(1 + normA[0]**2 / (mu_g * mu_f) / rho**2)
sigma = 1 / ((kappa - 1) * mu_f)
tau = 1 / ((kappa - 1) * mu_g)
theta = 1 - 2 / (1 + kappa)
x_opt, y_opt = X.zero(), Y.zero() # initialise variables
# create callback
callback = (odl.solvers.CallbackPrintIteration(step=10, end=', ') &
odl.solvers.CallbackPrintTiming(step=10, cumulative=True))
# compute a saddle point with PDHG and time the reconstruction
g.prox_options['p'] = None
odl.solvers.pdhg(x_opt, g, f, A, niter_target, tau, sigma, y=y_opt,
theta=theta, callback=callback)
# compute the subgradients of the saddle point
subx_opt = -A.adjoint(y_opt)
suby_opt = A(x_opt)
# compute the objective function value at the saddle point
obj_opt = obj_fun(x_opt)
# save saddle point
np.save(file_target, (x_opt, y_opt, subx_opt, suby_opt, obj_opt),
allow_pickle=True)
# show saddle point and subgradients
misc.save_image(x_opt, 'x_saddle', folder_main, 1, clim=clim)
misc.save_signal(y_opt[0], 'y_saddle[0]', folder_main, 2)
misc.save_image(subx_opt, 'subx_saddle', folder_main, 3)
misc.save_signal(suby_opt[0], 'suby_saddle[0]', folder_main, 4)
else:
(x_opt, y_opt, subx_opt, suby_opt, obj_opt) = np.load(file_target,
allow_pickle=True)
# set distances
dist_x = 1 / 2 * odl.solvers.L2NormSquared(X).translated(x_opt)
dist_y = 1 / 2 * odl.solvers.L2NormSquared(Y).translated(y_opt)
class CallbackStore(odl.solvers.Callback):
"""Callback to store function values"""
def __init__(self, alg, iter_save, iter_plot):
self.iter_save = iter_save
self.iter_plot = iter_plot
self.iter = 0
self.alg = alg
self.out = []
def __call__(self, x, **kwargs):
if self.iter in self.iter_save:
obj = obj_fun(x[0])
dx = dist_x(x[0])
dy = dist_y(x[1])
d = dx + dy
self.out.append({'obj': obj, 'dist': d,
'dist_x': dx, 'dist_y': dy})
if self.iter in self.iter_plot:
fname = '{}_{}'.format(self.alg, self.iter)
misc.save_image(x[0], fname, folder_today, 1, clim=clim)
self.iter += 1
# number of subsets for each algorithm
nsub = {'pdhg': 1, 'spdhg_uni10': 10, 'spdhg_uni50': 50,
'pesquet_uni10': 10, 'pesquet_uni50': 50}
# number of iterations for each algorithm
niter, iter_save, iter_plot = {}, {}, {}
for alg in nsub.keys():
niter[alg] = nepoch * nsub[alg]
iter_save[alg] = range(0, niter[alg] + 1, nsub[alg])
iter_plot[alg] = list(np.array([10, 20, 30, 40, 100, 300]) * nsub[alg])
# %% --- Run algorithms ---
for alg in ['pdhg', 'spdhg_uni10', 'spdhg_uni50', 'pesquet_uni10',
'pesquet_uni50']:
print('======= ' + alg + ' =======')
# clear variables in order not to use previous instances
prob, sigma, tau, theta = [None] * 4
# create lists for subset division
n = nsub[alg]
(sub2ind, ind2sub) = misc.divide_1Darray_equally(range(len(A)), n)
# set random seed so that results are reproducable
np.random.seed(1807)
if alg == 'pdhg' or alg[0:5] == 'spdhg':
file_normA = '{}/norms_{}subsets.npy'.format(folder_main, n)
elif alg[0:7] == 'pesquet':
file_normA = '{}/norms_{}subsets.npy'.format(folder_main, 1)
if not os.path.exists(file_normA):
A_subsets = [odl.BroadcastOperator(*[A[i] for i in subset])
for subset in sub2ind]
normA = [tol_norm * Ai.norm(estimate=True) for Ai in A_subsets]
np.save(file_normA, normA)
else:
normA = np.load(file_normA)
# choose parameters for algorithm
if alg == 'pdhg':
kappa = np.sqrt(1 + normA[0]**2 / (mu_g * mu_f) / rho**2)
prob_subset = [1]
prob = [1] * Y.size
sigma = [1 / ((kappa - 1) * mu_f)] * Y.size
tau = 1 / ((kappa - 1) * mu_g)
theta = 1 - 2 / (1 + kappa)
elif alg.startswith('spdhg'):
kappa = [np.sqrt(1 + normAi**2 / (mu_g * mui) / rho**2)
for normAi, mui in zip(normA, mu_i)]
kappa_max = max(kappa)
prob_subset = [1 / n] * n
prob = [1 / n] * Y.size
sigma = [1 / ((kappa_max - 1) * mui) for mui in mu_i]
tau = 1 / ((n * kappa_max + n - 2) * mu_g)
theta = 1 - 2 / (n + n * kappa_max)
elif alg.startswith('pesquet'):
prob_subset = [1 / n] * n
prob = [1 / n] * Y.size
sigma = [rho / normA[0]] * Y.size
tau = rho / normA[0]
else:
assert False, "Parameters not defined"
# function that selects the indices every iteration
def fun_select(k):
return sub2ind[int(np.random.choice(n, 1, p=prob_subset))]
# initialise variables
x, y = X.zero(), Y.zero()
# output function to be used within the iterations
callback = (odl.solvers.CallbackPrintIteration(step=n, end=', ') &
odl.solvers.CallbackPrintTiming(step=n, cumulative=True) &
CallbackStore(alg, iter_save[alg], iter_plot[alg]))
x, y = X.zero(), Y.zero() # initialise variables
callback([x, y])
g.prox_options['p'] = None
if alg.startswith('pdhg') or alg.startswith('spdhg'):
spdhg(x, f, g, A, tau, sigma, niter[alg], prob=prob, y=y,
fun_select=fun_select, theta=theta, callback=callback)
elif alg.startswith('pesquet'):
spdhg_pesquet(x, f, g, A, tau, sigma, niter[alg], y=y,
fun_select=fun_select, callback=callback)
else:
assert False, "Algorithm not defined"
np.save('{}/{}_output'.format(folder_npy, alg), (iter_save[alg],
niter[alg], x, callback.callbacks[1].out, nsub[alg], theta),
allow_pickle=True)
# %% --- Analyse and visualise the output ---
algs = ['pdhg', 'spdhg_uni10', 'spdhg_uni50', 'pesquet_uni10', 'pesquet_uni50']
iter_save_v, niter_v, image_v, out_v, nsub_v, theta_v = {}, {}, {}, {}, {}, {}
for a in algs:
(iter_save_v[a], niter_v[a], image_v[a], out_v[a], nsub_v[a],
theta_v[a]) = np.load('{}/{}_output.npy'.format(folder_npy, a),
allow_pickle=True)
epochs_save = {a: np.array(iter_save_v[a]) / np.float(nsub_v[a]) for a in algs}
out_resorted = {}
for a in algs:
print('==== ' + a)
out_resorted[a] = {}
K = len(iter_save_v[a])
for meas in out_v[a][0].keys(): # quality measures
print(' ==== ' + meas)
out_resorted[a][meas] = np.nan * np.ones(K)
for k in range(K): # iterations
out_resorted[a][meas][k] = out_v[a][k][meas]
meas = 'obj_rel'
print(' ==== ' + meas)
out_resorted[a][meas] = np.nan * np.ones(K)
for k in range(K): # iterations
out_resorted[a][meas][k] = ((out_v[a][k]['obj'] - obj_opt) /
(out_v[a][0]['obj'] - obj_opt))
for a in algs: # algorithms
for meas in out_resorted[a].keys(): # quality measures
for k in range(K): # iterations
if out_resorted[a][meas][k] <= 0:
out_resorted[a][meas][k] = np.nan
fig = plt.figure()
for a in algs:
misc.save_image(image_v[a], a, folder_today, 1, clim=clim)
markers = plt.Line2D.filled_markers
all_plots = out_resorted[algs[0]].keys()
logy_plot = all_plots
for plotx in ['linx', 'logx']:
for meas in all_plots:
print('============ ' + plotx + ' === ' + meas + ' ============')
fig = plt.figure(1)
plt.clf()
if plotx == 'linx':
if meas in logy_plot:
for a in algs:
x = epochs_save[a]
y = out_resorted[a][meas]
plt.semilogy(x, y, linewidth=3, label=a)
else:
for j, a in enumerate(algs):
x = epochs_save[a]
y = out_resorted[a][meas]
plt.plot(x, y, linewidth=3, marker=markers[j],
markersize=7, markevery=.1, label=a)
elif plotx == 'logx':
if meas in logy_plot:
for a in algs:
x = epochs_save[a][1:]
y = out_resorted[a][meas][1:]
plt.loglog(x, y, linewidth=3, label=a)
else:
for j, a in enumerate(algs):
x = epochs_save[a][1:]
y = out_resorted[a][meas][1:]
plt.semilogx(x, y, linewidth=3, marker=markers[j],
markersize=7, markevery=.1, label=a)
plt.title('{} v iteration'.format(meas))
h = plt.gca()
h.set_xlabel('epochs')
plt.legend(loc='best')
fig.savefig('{}/{}_{}_{}.png'.format(folder_today, filename, plotx,
meas), bbox_inches='tight')
# %% --- Prepapare visual output as in [1] ---
# set line width and style
lwidth = 2
lwidth_help = 2
lstyle = '-'
lstyle_help = '--'
# set colors using colorbrewer
bmap = brewer2mpl.get_map('Paired', 'Qualitative', 6)
colors = bmap.mpl_colors
colors.pop(1)
# set latex options
matplotlib.rc('text', usetex=True)
matplotlib.rcParams['text.latex.preamble'] = [r"\usepackage{amsmath}"]
# set font
fsize = 15
font = {'family': 'serif', 'size': fsize}
matplotlib.rc('font', **font)
matplotlib.rc('axes', labelsize=fsize) # fontsize of x and y labels
matplotlib.rc('xtick', labelsize=fsize) # fontsize of xtick labels
matplotlib.rc('ytick', labelsize=fsize) # fontsize of ytick labels
matplotlib.rc('legend', fontsize=fsize) # legend fontsize
# markers
marker = ('o', 'v', 's', 'p', 'd', 'x', 'x') # set markers
mevery = [(i / 30., .15) for i in range(20)] # how many markers to draw
msize = 9 # marker size
algs = ['pdhg', 'spdhg_uni10', 'spdhg_uni50', 'pesquet_uni10', 'pesquet_uni50']
label = ['PDHG', 'SPDHG (10 subsets)', 'SPDHG (50)', 'Pesquet\&Repetti (10)',
'Pesquet\&Repetti (50)']
fig = []
# draw figures
fig.append(plt.figure(1))
plt.clf()
xlim = [0, 100]
ylim = [1e-8, 5e-1]
meas = 'dist'
for k, a in enumerate(algs):
x = epochs_save[a]
y = out_resorted[a][meas] / out_resorted[a][meas][0]
i = (np.less_equal(x, xlim[1]) & np.greater_equal(x, xlim[0]) &
np.less_equal(y, ylim[1]) & np.greater_equal(y, ylim[0]))
plt.semilogy(x[i], y[i], color=colors[k], linestyle=lstyle,
marker=marker[k], markersize=msize, markevery=mevery[k],
linewidth=lwidth, label=label[k])
plt.gca().set_xlabel('iterations [epochs]')
plt.gca().set_ylabel('relative distance to saddle point')
plt.gca().yaxis.set_ticks(np.logspace(-6, -2, 3))
plt.legend(frameon=False)
fig.append(plt.figure(2))
plt.clf()
ylim = [1e-8, 1]
meas = 'obj_rel'
for k, a in enumerate(algs):
x = epochs_save[a]
y = out_resorted[a][meas]
i = (np.less_equal(x, xlim[1]) & np.greater_equal(x, xlim[0]) &
np.less_equal(y, ylim[1]) & np.greater_equal(y, ylim[0]))
plt.semilogy(x[i], y[i], color=colors[k], linestyle=lstyle,
linewidth=lwidth, marker=marker[k], markersize=msize,
markevery=mevery[k], label=label[k])
plt.gca().set_xlabel('iterations [epochs]')
plt.gca().set_ylabel('relative objective')
plt.gca().yaxis.set_ticks(np.logspace(-7, -1, 3))
plt.legend(frameon=False)
# %%
for i, fi in enumerate(fig):
fi.savefig('{}/{}_output{}.png'.format(folder_today, filename, i),
bbox_inches='tight')